Metamath Proof Explorer


Theorem t1sep

Description: Any two distinct points in a T_1 space are separated by an open set. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis t1sep.1 X = J
Assertion t1sep J Fre A X B X A B o J A o ¬ B o

Proof

Step Hyp Ref Expression
1 t1sep.1 X = J
2 simpr3 J Fre A X B X A B A B
3 1 t1sep2 J Fre A X B X o J A o B o A = B
4 3 3adant3r3 J Fre A X B X A B o J A o B o A = B
5 4 necon3ad J Fre A X B X A B A B ¬ o J A o B o
6 2 5 mpd J Fre A X B X A B ¬ o J A o B o
7 rexanali o J A o ¬ B o ¬ o J A o B o
8 6 7 sylibr J Fre A X B X A B o J A o ¬ B o