Metamath Proof Explorer


Theorem t1sep2

Description: Any two points in a T_1 space which have no separation are equal. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis t1sep.1 X = J
Assertion t1sep2 J Fre A X B X o J A o B o A = B

Proof

Step Hyp Ref Expression
1 t1sep.1 X = J
2 t1top J Fre J Top
3 1 toptopon J Top J TopOn X
4 2 3 sylib J Fre J TopOn X
5 ist1-2 J TopOn X J Fre x X y X o J x o y o x = y
6 4 5 syl J Fre J Fre x X y X o J x o y o x = y
7 6 ibi J Fre x X y X o J x o y o x = y
8 eleq1 x = A x o A o
9 8 imbi1d x = A x o y o A o y o
10 9 ralbidv x = A o J x o y o o J A o y o
11 eqeq1 x = A x = y A = y
12 10 11 imbi12d x = A o J x o y o x = y o J A o y o A = y
13 eleq1 y = B y o B o
14 13 imbi2d y = B A o y o A o B o
15 14 ralbidv y = B o J A o y o o J A o B o
16 eqeq2 y = B A = y A = B
17 15 16 imbi12d y = B o J A o y o A = y o J A o B o A = B
18 12 17 rspc2v A X B X x X y X o J x o y o x = y o J A o B o A = B
19 7 18 mpan9 J Fre A X B X o J A o B o A = B
20 19 3impb J Fre A X B X o J A o B o A = B