Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
t1sncld
Next ⟩
t1ficld
Metamath Proof Explorer
Ascii
Unicode
Theorem
t1sncld
Description:
In a T_1 space, singletons are closed.
(Contributed by
Jeff Hankins
, 1-Feb-2010)
Ref
Expression
Hypothesis
ist0.1
⊢
X
=
⋃
J
Assertion
t1sncld
⊢
J
∈
Fre
∧
A
∈
X
→
A
∈
Clsd
⁡
J
Proof
Step
Hyp
Ref
Expression
1
ist0.1
⊢
X
=
⋃
J
2
1
ist1
⊢
J
∈
Fre
↔
J
∈
Top
∧
∀
x
∈
X
x
∈
Clsd
⁡
J
3
sneq
⊢
x
=
A
→
x
=
A
4
3
eleq1d
⊢
x
=
A
→
x
∈
Clsd
⁡
J
↔
A
∈
Clsd
⁡
J
5
4
rspccv
⊢
∀
x
∈
X
x
∈
Clsd
⁡
J
→
A
∈
X
→
A
∈
Clsd
⁡
J
6
2
5
simplbiim
⊢
J
∈
Fre
→
A
∈
X
→
A
∈
Clsd
⁡
J
7
6
imp
⊢
J
∈
Fre
∧
A
∈
X
→
A
∈
Clsd
⁡
J