Metamath Proof Explorer


Theorem t1sncld

Description: In a T_1 space, singletons are closed. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Hypothesis ist0.1 X = J
Assertion t1sncld J Fre A X A Clsd J

Proof

Step Hyp Ref Expression
1 ist0.1 X = J
2 1 ist1 J Fre J Top x X x Clsd J
3 sneq x = A x = A
4 3 eleq1d x = A x Clsd J A Clsd J
5 4 rspccv x X x Clsd J A X A Clsd J
6 2 5 simplbiim J Fre A X A Clsd J
7 6 imp J Fre A X A Clsd J