Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
t1top
Next ⟩
haustop
Metamath Proof Explorer
Ascii
Unicode
Theorem
t1top
Description:
A T_1 space is a topological space.
(Contributed by
Jeff Hankins
, 1-Feb-2010)
Ref
Expression
Assertion
t1top
⊢
J
∈
Fre
→
J
∈
Top
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
⋃
J
=
⋃
J
2
1
ist1
⊢
J
∈
Fre
↔
J
∈
Top
∧
∀
x
∈
⋃
J
x
∈
Clsd
⁡
J
3
2
simplbi
⊢
J
∈
Fre
→
J
∈
Top