Metamath Proof Explorer


Theorem tanadd

Description: Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion tanadd A B cos A 0 cos B 0 cos A + B 0 tan A + B = tan A + tan B 1 tan A tan B

Proof

Step Hyp Ref Expression
1 addcl A B A + B
2 1 adantr A B cos A 0 cos B 0 cos A + B 0 A + B
3 simpr3 A B cos A 0 cos B 0 cos A + B 0 cos A + B 0
4 tanval A + B cos A + B 0 tan A + B = sin A + B cos A + B
5 2 3 4 syl2anc A B cos A 0 cos B 0 cos A + B 0 tan A + B = sin A + B cos A + B
6 sinadd A B sin A + B = sin A cos B + cos A sin B
7 6 adantr A B cos A 0 cos B 0 cos A + B 0 sin A + B = sin A cos B + cos A sin B
8 cosadd A B cos A + B = cos A cos B sin A sin B
9 8 adantr A B cos A 0 cos B 0 cos A + B 0 cos A + B = cos A cos B sin A sin B
10 7 9 oveq12d A B cos A 0 cos B 0 cos A + B 0 sin A + B cos A + B = sin A cos B + cos A sin B cos A cos B sin A sin B
11 simpll A B cos A 0 cos B 0 cos A + B 0 A
12 11 coscld A B cos A 0 cos B 0 cos A + B 0 cos A
13 simplr A B cos A 0 cos B 0 cos A + B 0 B
14 13 coscld A B cos A 0 cos B 0 cos A + B 0 cos B
15 12 14 mulcld A B cos A 0 cos B 0 cos A + B 0 cos A cos B
16 simpr1 A B cos A 0 cos B 0 cos A + B 0 cos A 0
17 11 16 tancld A B cos A 0 cos B 0 cos A + B 0 tan A
18 simpr2 A B cos A 0 cos B 0 cos A + B 0 cos B 0
19 13 18 tancld A B cos A 0 cos B 0 cos A + B 0 tan B
20 15 17 19 adddid A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan A + tan B = cos A cos B tan A + cos A cos B tan B
21 12 14 17 mul32d A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan A = cos A tan A cos B
22 tanval A cos A 0 tan A = sin A cos A
23 11 16 22 syl2anc A B cos A 0 cos B 0 cos A + B 0 tan A = sin A cos A
24 23 oveq2d A B cos A 0 cos B 0 cos A + B 0 cos A tan A = cos A sin A cos A
25 11 sincld A B cos A 0 cos B 0 cos A + B 0 sin A
26 25 12 16 divcan2d A B cos A 0 cos B 0 cos A + B 0 cos A sin A cos A = sin A
27 24 26 eqtrd A B cos A 0 cos B 0 cos A + B 0 cos A tan A = sin A
28 27 oveq1d A B cos A 0 cos B 0 cos A + B 0 cos A tan A cos B = sin A cos B
29 21 28 eqtrd A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan A = sin A cos B
30 12 14 19 mulassd A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan B = cos A cos B tan B
31 tanval B cos B 0 tan B = sin B cos B
32 13 18 31 syl2anc A B cos A 0 cos B 0 cos A + B 0 tan B = sin B cos B
33 32 oveq2d A B cos A 0 cos B 0 cos A + B 0 cos B tan B = cos B sin B cos B
34 13 sincld A B cos A 0 cos B 0 cos A + B 0 sin B
35 34 14 18 divcan2d A B cos A 0 cos B 0 cos A + B 0 cos B sin B cos B = sin B
36 33 35 eqtrd A B cos A 0 cos B 0 cos A + B 0 cos B tan B = sin B
37 36 oveq2d A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan B = cos A sin B
38 30 37 eqtrd A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan B = cos A sin B
39 29 38 oveq12d A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan A + cos A cos B tan B = sin A cos B + cos A sin B
40 20 39 eqtrd A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan A + tan B = sin A cos B + cos A sin B
41 1cnd A B cos A 0 cos B 0 cos A + B 0 1
42 17 19 mulcld A B cos A 0 cos B 0 cos A + B 0 tan A tan B
43 15 41 42 subdid A B cos A 0 cos B 0 cos A + B 0 cos A cos B 1 tan A tan B = cos A cos B 1 cos A cos B tan A tan B
44 15 mulid1d A B cos A 0 cos B 0 cos A + B 0 cos A cos B 1 = cos A cos B
45 12 14 17 19 mul4d A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan A tan B = cos A tan A cos B tan B
46 27 36 oveq12d A B cos A 0 cos B 0 cos A + B 0 cos A tan A cos B tan B = sin A sin B
47 45 46 eqtrd A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan A tan B = sin A sin B
48 44 47 oveq12d A B cos A 0 cos B 0 cos A + B 0 cos A cos B 1 cos A cos B tan A tan B = cos A cos B sin A sin B
49 43 48 eqtrd A B cos A 0 cos B 0 cos A + B 0 cos A cos B 1 tan A tan B = cos A cos B sin A sin B
50 40 49 oveq12d A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan A + tan B cos A cos B 1 tan A tan B = sin A cos B + cos A sin B cos A cos B sin A sin B
51 17 19 addcld A B cos A 0 cos B 0 cos A + B 0 tan A + tan B
52 ax-1cn 1
53 subcl 1 tan A tan B 1 tan A tan B
54 52 42 53 sylancr A B cos A 0 cos B 0 cos A + B 0 1 tan A tan B
55 tanaddlem A B cos A 0 cos B 0 cos A + B 0 tan A tan B 1
56 55 3adantr3 A B cos A 0 cos B 0 cos A + B 0 cos A + B 0 tan A tan B 1
57 3 56 mpbid A B cos A 0 cos B 0 cos A + B 0 tan A tan B 1
58 57 necomd A B cos A 0 cos B 0 cos A + B 0 1 tan A tan B
59 subeq0 1 tan A tan B 1 tan A tan B = 0 1 = tan A tan B
60 59 necon3bid 1 tan A tan B 1 tan A tan B 0 1 tan A tan B
61 52 42 60 sylancr A B cos A 0 cos B 0 cos A + B 0 1 tan A tan B 0 1 tan A tan B
62 58 61 mpbird A B cos A 0 cos B 0 cos A + B 0 1 tan A tan B 0
63 12 14 16 18 mulne0d A B cos A 0 cos B 0 cos A + B 0 cos A cos B 0
64 51 54 15 62 63 divcan5d A B cos A 0 cos B 0 cos A + B 0 cos A cos B tan A + tan B cos A cos B 1 tan A tan B = tan A + tan B 1 tan A tan B
65 10 50 64 3eqtr2rd A B cos A 0 cos B 0 cos A + B 0 tan A + tan B 1 tan A tan B = sin A + B cos A + B
66 5 65 eqtr4d A B cos A 0 cos B 0 cos A + B 0 tan A + B = tan A + tan B 1 tan A tan B