Step |
Hyp |
Ref |
Expression |
1 |
|
addcl |
|
2 |
1
|
adantr |
|
3 |
|
simpr3 |
|
4 |
|
tanval |
|
5 |
2 3 4
|
syl2anc |
|
6 |
|
sinadd |
|
7 |
6
|
adantr |
|
8 |
|
cosadd |
|
9 |
8
|
adantr |
|
10 |
7 9
|
oveq12d |
|
11 |
|
simpll |
|
12 |
11
|
coscld |
|
13 |
|
simplr |
|
14 |
13
|
coscld |
|
15 |
12 14
|
mulcld |
|
16 |
|
simpr1 |
|
17 |
11 16
|
tancld |
|
18 |
|
simpr2 |
|
19 |
13 18
|
tancld |
|
20 |
15 17 19
|
adddid |
|
21 |
12 14 17
|
mul32d |
|
22 |
|
tanval |
|
23 |
11 16 22
|
syl2anc |
|
24 |
23
|
oveq2d |
|
25 |
11
|
sincld |
|
26 |
25 12 16
|
divcan2d |
|
27 |
24 26
|
eqtrd |
|
28 |
27
|
oveq1d |
|
29 |
21 28
|
eqtrd |
|
30 |
12 14 19
|
mulassd |
|
31 |
|
tanval |
|
32 |
13 18 31
|
syl2anc |
|
33 |
32
|
oveq2d |
|
34 |
13
|
sincld |
|
35 |
34 14 18
|
divcan2d |
|
36 |
33 35
|
eqtrd |
|
37 |
36
|
oveq2d |
|
38 |
30 37
|
eqtrd |
|
39 |
29 38
|
oveq12d |
|
40 |
20 39
|
eqtrd |
|
41 |
|
1cnd |
|
42 |
17 19
|
mulcld |
|
43 |
15 41 42
|
subdid |
|
44 |
15
|
mulid1d |
|
45 |
12 14 17 19
|
mul4d |
|
46 |
27 36
|
oveq12d |
|
47 |
45 46
|
eqtrd |
|
48 |
44 47
|
oveq12d |
|
49 |
43 48
|
eqtrd |
|
50 |
40 49
|
oveq12d |
|
51 |
17 19
|
addcld |
|
52 |
|
ax-1cn |
|
53 |
|
subcl |
|
54 |
52 42 53
|
sylancr |
|
55 |
|
tanaddlem |
|
56 |
55
|
3adantr3 |
|
57 |
3 56
|
mpbid |
|
58 |
57
|
necomd |
|
59 |
|
subeq0 |
|
60 |
59
|
necon3bid |
|
61 |
52 42 60
|
sylancr |
|
62 |
58 61
|
mpbird |
|
63 |
12 14 16 18
|
mulne0d |
|
64 |
51 54 15 62 63
|
divcan5d |
|
65 |
10 50 64
|
3eqtr2rd |
|
66 |
5 65
|
eqtr4d |
|