| Step | Hyp | Ref | Expression | 
						
							| 1 |  | coscl |  | 
						
							| 2 | 1 | ad2antrr |  | 
						
							| 3 |  | coscl |  | 
						
							| 4 | 3 | ad2antlr |  | 
						
							| 5 | 2 4 | mulcld |  | 
						
							| 6 |  | sincl |  | 
						
							| 7 | 6 | ad2antrr |  | 
						
							| 8 |  | sincl |  | 
						
							| 9 | 8 | ad2antlr |  | 
						
							| 10 | 7 9 | mulcld |  | 
						
							| 11 | 5 10 | subeq0ad |  | 
						
							| 12 |  | cosadd |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | eqeq1d |  | 
						
							| 15 |  | tanval |  | 
						
							| 16 | 15 | ad2ant2r |  | 
						
							| 17 |  | tanval |  | 
						
							| 18 | 17 | ad2ant2l |  | 
						
							| 19 | 16 18 | oveq12d |  | 
						
							| 20 |  | simprl |  | 
						
							| 21 |  | simprr |  | 
						
							| 22 | 7 2 9 4 20 21 | divmuldivd |  | 
						
							| 23 | 19 22 | eqtrd |  | 
						
							| 24 | 23 | eqeq1d |  | 
						
							| 25 |  | 1cnd |  | 
						
							| 26 | 2 4 20 21 | mulne0d |  | 
						
							| 27 | 10 5 25 26 | divmuld |  | 
						
							| 28 | 5 | mulridd |  | 
						
							| 29 | 28 | eqeq1d |  | 
						
							| 30 | 24 27 29 | 3bitrd |  | 
						
							| 31 | 11 14 30 | 3bitr4d |  | 
						
							| 32 | 31 | necon3bid |  |