Step |
Hyp |
Ref |
Expression |
1 |
|
coscl |
|
2 |
1
|
ad2antrr |
|
3 |
|
coscl |
|
4 |
3
|
ad2antlr |
|
5 |
2 4
|
mulcld |
|
6 |
|
sincl |
|
7 |
6
|
ad2antrr |
|
8 |
|
sincl |
|
9 |
8
|
ad2antlr |
|
10 |
7 9
|
mulcld |
|
11 |
5 10
|
subeq0ad |
|
12 |
|
cosadd |
|
13 |
12
|
adantr |
|
14 |
13
|
eqeq1d |
|
15 |
|
tanval |
|
16 |
15
|
ad2ant2r |
|
17 |
|
tanval |
|
18 |
17
|
ad2ant2l |
|
19 |
16 18
|
oveq12d |
|
20 |
|
simprl |
|
21 |
|
simprr |
|
22 |
7 2 9 4 20 21
|
divmuldivd |
|
23 |
19 22
|
eqtrd |
|
24 |
23
|
eqeq1d |
|
25 |
|
1cnd |
|
26 |
2 4 20 21
|
mulne0d |
|
27 |
10 5 25 26
|
divmuld |
|
28 |
5
|
mulid1d |
|
29 |
28
|
eqeq1d |
|
30 |
24 27 29
|
3bitrd |
|
31 |
11 14 30
|
3bitr4d |
|
32 |
31
|
necon3bid |
|