| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coscl |
|
| 2 |
1
|
ad2antrr |
|
| 3 |
|
coscl |
|
| 4 |
3
|
ad2antlr |
|
| 5 |
2 4
|
mulcld |
|
| 6 |
|
sincl |
|
| 7 |
6
|
ad2antrr |
|
| 8 |
|
sincl |
|
| 9 |
8
|
ad2antlr |
|
| 10 |
7 9
|
mulcld |
|
| 11 |
5 10
|
subeq0ad |
|
| 12 |
|
cosadd |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
eqeq1d |
|
| 15 |
|
tanval |
|
| 16 |
15
|
ad2ant2r |
|
| 17 |
|
tanval |
|
| 18 |
17
|
ad2ant2l |
|
| 19 |
16 18
|
oveq12d |
|
| 20 |
|
simprl |
|
| 21 |
|
simprr |
|
| 22 |
7 2 9 4 20 21
|
divmuldivd |
|
| 23 |
19 22
|
eqtrd |
|
| 24 |
23
|
eqeq1d |
|
| 25 |
|
1cnd |
|
| 26 |
2 4 20 21
|
mulne0d |
|
| 27 |
10 5 25 26
|
divmuld |
|
| 28 |
5
|
mulridd |
|
| 29 |
28
|
eqeq1d |
|
| 30 |
24 27 29
|
3bitrd |
|
| 31 |
11 14 30
|
3bitr4d |
|
| 32 |
31
|
necon3bid |
|