Metamath Proof Explorer


Theorem tanaddlem

Description: A useful intermediate step in tanadd when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion tanaddlem A B cos A 0 cos B 0 cos A + B 0 tan A tan B 1

Proof

Step Hyp Ref Expression
1 coscl A cos A
2 1 ad2antrr A B cos A 0 cos B 0 cos A
3 coscl B cos B
4 3 ad2antlr A B cos A 0 cos B 0 cos B
5 2 4 mulcld A B cos A 0 cos B 0 cos A cos B
6 sincl A sin A
7 6 ad2antrr A B cos A 0 cos B 0 sin A
8 sincl B sin B
9 8 ad2antlr A B cos A 0 cos B 0 sin B
10 7 9 mulcld A B cos A 0 cos B 0 sin A sin B
11 5 10 subeq0ad A B cos A 0 cos B 0 cos A cos B sin A sin B = 0 cos A cos B = sin A sin B
12 cosadd A B cos A + B = cos A cos B sin A sin B
13 12 adantr A B cos A 0 cos B 0 cos A + B = cos A cos B sin A sin B
14 13 eqeq1d A B cos A 0 cos B 0 cos A + B = 0 cos A cos B sin A sin B = 0
15 tanval A cos A 0 tan A = sin A cos A
16 15 ad2ant2r A B cos A 0 cos B 0 tan A = sin A cos A
17 tanval B cos B 0 tan B = sin B cos B
18 17 ad2ant2l A B cos A 0 cos B 0 tan B = sin B cos B
19 16 18 oveq12d A B cos A 0 cos B 0 tan A tan B = sin A cos A sin B cos B
20 simprl A B cos A 0 cos B 0 cos A 0
21 simprr A B cos A 0 cos B 0 cos B 0
22 7 2 9 4 20 21 divmuldivd A B cos A 0 cos B 0 sin A cos A sin B cos B = sin A sin B cos A cos B
23 19 22 eqtrd A B cos A 0 cos B 0 tan A tan B = sin A sin B cos A cos B
24 23 eqeq1d A B cos A 0 cos B 0 tan A tan B = 1 sin A sin B cos A cos B = 1
25 1cnd A B cos A 0 cos B 0 1
26 2 4 20 21 mulne0d A B cos A 0 cos B 0 cos A cos B 0
27 10 5 25 26 divmuld A B cos A 0 cos B 0 sin A sin B cos A cos B = 1 cos A cos B 1 = sin A sin B
28 5 mulid1d A B cos A 0 cos B 0 cos A cos B 1 = cos A cos B
29 28 eqeq1d A B cos A 0 cos B 0 cos A cos B 1 = sin A sin B cos A cos B = sin A sin B
30 24 27 29 3bitrd A B cos A 0 cos B 0 tan A tan B = 1 cos A cos B = sin A sin B
31 11 14 30 3bitr4d A B cos A 0 cos B 0 cos A + B = 0 tan A tan B = 1
32 31 necon3bid A B cos A 0 cos B 0 cos A + B 0 tan A tan B 1