Metamath Proof Explorer


Theorem tangtx

Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014)

Ref Expression
Assertion tangtx A 0 π 2 A < tan A

Proof

Step Hyp Ref Expression
1 elioore A 0 π 2 A
2 1 recoscld A 0 π 2 cos A
3 1 2 remulcld A 0 π 2 A cos A
4 1re 1
5 rehalfcl A A 2
6 1 5 syl A 0 π 2 A 2
7 6 resqcld A 0 π 2 A 2 2
8 3nn 3
9 nndivre A 2 2 3 A 2 2 3
10 7 8 9 sylancl A 0 π 2 A 2 2 3
11 resubcl 1 A 2 2 3 1 A 2 2 3
12 4 10 11 sylancr A 0 π 2 1 A 2 2 3
13 1 12 remulcld A 0 π 2 A 1 A 2 2 3
14 2re 2
15 remulcl 2 A 2 2 3 2 A 2 2 3
16 14 10 15 sylancr A 0 π 2 2 A 2 2 3
17 resubcl 1 2 A 2 2 3 1 2 A 2 2 3
18 4 16 17 sylancr A 0 π 2 1 2 A 2 2 3
19 13 18 remulcld A 0 π 2 A 1 A 2 2 3 1 2 A 2 2 3
20 1 resincld A 0 π 2 sin A
21 12 resqcld A 0 π 2 1 A 2 2 3 2
22 remulcl 2 1 A 2 2 3 2 2 1 A 2 2 3 2
23 14 21 22 sylancr A 0 π 2 2 1 A 2 2 3 2
24 resubcl 2 1 A 2 2 3 2 1 2 1 A 2 2 3 2 1
25 23 4 24 sylancl A 0 π 2 2 1 A 2 2 3 2 1
26 12 18 remulcld A 0 π 2 1 A 2 2 3 1 2 A 2 2 3
27 1 recnd A 0 π 2 A
28 2cn 2
29 28 a1i A 0 π 2 2
30 2ne0 2 0
31 30 a1i A 0 π 2 2 0
32 27 29 31 divcan2d A 0 π 2 2 A 2 = A
33 32 fveq2d A 0 π 2 cos 2 A 2 = cos A
34 6 recnd A 0 π 2 A 2
35 cos2t A 2 cos 2 A 2 = 2 cos A 2 2 1
36 34 35 syl A 0 π 2 cos 2 A 2 = 2 cos A 2 2 1
37 33 36 eqtr3d A 0 π 2 cos A = 2 cos A 2 2 1
38 6 recoscld A 0 π 2 cos A 2
39 38 resqcld A 0 π 2 cos A 2 2
40 remulcl 2 cos A 2 2 2 cos A 2 2
41 14 39 40 sylancr A 0 π 2 2 cos A 2 2
42 4 a1i A 0 π 2 1
43 14 a1i A 0 π 2 2
44 eliooord A 0 π 2 0 < A A < π 2
45 44 simpld A 0 π 2 0 < A
46 2pos 0 < 2
47 46 a1i A 0 π 2 0 < 2
48 1 43 45 47 divgt0d A 0 π 2 0 < A 2
49 pire π
50 rehalfcl π π 2
51 49 50 mp1i A 0 π 2 π 2
52 44 simprd A 0 π 2 A < π 2
53 pigt2lt4 2 < π π < 4
54 53 simpri π < 4
55 2t2e4 2 2 = 4
56 54 55 breqtrri π < 2 2
57 14 46 pm3.2i 2 0 < 2
58 ltdivmul π 2 2 0 < 2 π 2 < 2 π < 2 2
59 49 14 57 58 mp3an π 2 < 2 π < 2 2
60 56 59 mpbir π 2 < 2
61 60 a1i A 0 π 2 π 2 < 2
62 1 51 43 52 61 lttrd A 0 π 2 A < 2
63 28 mulid2i 1 2 = 2
64 62 63 breqtrrdi A 0 π 2 A < 1 2
65 ltdivmul2 A 1 2 0 < 2 A 2 < 1 A < 1 2
66 1 42 43 47 65 syl112anc A 0 π 2 A 2 < 1 A < 1 2
67 64 66 mpbird A 0 π 2 A 2 < 1
68 6 42 67 ltled A 0 π 2 A 2 1
69 0xr 0 *
70 elioc2 0 * 1 A 2 0 1 A 2 0 < A 2 A 2 1
71 69 4 70 mp2an A 2 0 1 A 2 0 < A 2 A 2 1
72 6 48 68 71 syl3anbrc A 0 π 2 A 2 0 1
73 cos01bnd A 2 0 1 1 2 A 2 2 3 < cos A 2 cos A 2 < 1 A 2 2 3
74 72 73 syl A 0 π 2 1 2 A 2 2 3 < cos A 2 cos A 2 < 1 A 2 2 3
75 74 simprd A 0 π 2 cos A 2 < 1 A 2 2 3
76 cos01gt0 A 2 0 1 0 < cos A 2
77 72 76 syl A 0 π 2 0 < cos A 2
78 0re 0
79 ltle 0 cos A 2 0 < cos A 2 0 cos A 2
80 78 38 79 sylancr A 0 π 2 0 < cos A 2 0 cos A 2
81 77 80 mpd A 0 π 2 0 cos A 2
82 78 a1i A 0 π 2 0
83 82 38 12 77 75 lttrd A 0 π 2 0 < 1 A 2 2 3
84 82 12 83 ltled A 0 π 2 0 1 A 2 2 3
85 38 12 81 84 lt2sqd A 0 π 2 cos A 2 < 1 A 2 2 3 cos A 2 2 < 1 A 2 2 3 2
86 75 85 mpbid A 0 π 2 cos A 2 2 < 1 A 2 2 3 2
87 ltmul2 cos A 2 2 1 A 2 2 3 2 2 0 < 2 cos A 2 2 < 1 A 2 2 3 2 2 cos A 2 2 < 2 1 A 2 2 3 2
88 39 21 43 47 87 syl112anc A 0 π 2 cos A 2 2 < 1 A 2 2 3 2 2 cos A 2 2 < 2 1 A 2 2 3 2
89 86 88 mpbid A 0 π 2 2 cos A 2 2 < 2 1 A 2 2 3 2
90 41 23 42 89 ltsub1dd A 0 π 2 2 cos A 2 2 1 < 2 1 A 2 2 3 2 1
91 37 90 eqbrtrd A 0 π 2 cos A < 2 1 A 2 2 3 2 1
92 3re 3
93 remulcl 3 A 2 2 3 3 A 2 2 3
94 92 10 93 sylancr A 0 π 2 3 A 2 2 3
95 4re 4
96 remulcl 4 A 2 2 3 4 A 2 2 3
97 95 10 96 sylancr A 0 π 2 4 A 2 2 3
98 10 resqcld A 0 π 2 A 2 2 3 2
99 remulcl 2 A 2 2 3 2 2 A 2 2 3 2
100 14 98 99 sylancr A 0 π 2 2 A 2 2 3 2
101 readdcl 1 2 A 2 2 3 2 1 + 2 A 2 2 3 2
102 4 100 101 sylancr A 0 π 2 1 + 2 A 2 2 3 2
103 3lt4 3 < 4
104 92 a1i A 0 π 2 3
105 95 a1i A 0 π 2 4
106 48 gt0ne0d A 0 π 2 A 2 0
107 6 106 sqgt0d A 0 π 2 0 < A 2 2
108 3pos 0 < 3
109 108 a1i A 0 π 2 0 < 3
110 7 104 107 109 divgt0d A 0 π 2 0 < A 2 2 3
111 ltmul1 3 4 A 2 2 3 0 < A 2 2 3 3 < 4 3 A 2 2 3 < 4 A 2 2 3
112 104 105 10 110 111 syl112anc A 0 π 2 3 < 4 3 A 2 2 3 < 4 A 2 2 3
113 103 112 mpbii A 0 π 2 3 A 2 2 3 < 4 A 2 2 3
114 94 97 102 113 ltsub2dd A 0 π 2 1 + 2 A 2 2 3 2 - 4 A 2 2 3 < 1 + 2 A 2 2 3 2 - 3 A 2 2 3
115 42 recnd A 0 π 2 1
116 ax-1cn 1
117 100 recnd A 0 π 2 2 A 2 2 3 2
118 addcl 1 2 A 2 2 3 2 1 + 2 A 2 2 3 2
119 116 117 118 sylancr A 0 π 2 1 + 2 A 2 2 3 2
120 97 recnd A 0 π 2 4 A 2 2 3
121 119 120 subcld A 0 π 2 1 + 2 A 2 2 3 2 - 4 A 2 2 3
122 sq1 1 2 = 1
123 122 a1i A 0 π 2 1 2 = 1
124 10 recnd A 0 π 2 A 2 2 3
125 124 mulid2d A 0 π 2 1 A 2 2 3 = A 2 2 3
126 125 oveq2d A 0 π 2 2 1 A 2 2 3 = 2 A 2 2 3
127 123 126 oveq12d A 0 π 2 1 2 2 1 A 2 2 3 = 1 2 A 2 2 3
128 127 oveq1d A 0 π 2 1 2 - 2 1 A 2 2 3 + A 2 2 3 2 = 1 - 2 A 2 2 3 + A 2 2 3 2
129 binom2sub 1 A 2 2 3 1 A 2 2 3 2 = 1 2 - 2 1 A 2 2 3 + A 2 2 3 2
130 116 124 129 sylancr A 0 π 2 1 A 2 2 3 2 = 1 2 - 2 1 A 2 2 3 + A 2 2 3 2
131 98 recnd A 0 π 2 A 2 2 3 2
132 16 recnd A 0 π 2 2 A 2 2 3
133 115 131 132 addsubd A 0 π 2 1 + A 2 2 3 2 - 2 A 2 2 3 = 1 - 2 A 2 2 3 + A 2 2 3 2
134 128 130 133 3eqtr4d A 0 π 2 1 A 2 2 3 2 = 1 + A 2 2 3 2 - 2 A 2 2 3
135 134 oveq2d A 0 π 2 2 1 A 2 2 3 2 = 2 1 + A 2 2 3 2 - 2 A 2 2 3
136 addcl 1 A 2 2 3 2 1 + A 2 2 3 2
137 116 131 136 sylancr A 0 π 2 1 + A 2 2 3 2
138 29 137 132 subdid A 0 π 2 2 1 + A 2 2 3 2 - 2 A 2 2 3 = 2 1 + A 2 2 3 2 2 2 A 2 2 3
139 29 115 131 adddid A 0 π 2 2 1 + A 2 2 3 2 = 2 1 + 2 A 2 2 3 2
140 116 2timesi 2 1 = 1 + 1
141 140 oveq1i 2 1 + 2 A 2 2 3 2 = 1 + 1 + 2 A 2 2 3 2
142 115 115 117 addassd A 0 π 2 1 + 1 + 2 A 2 2 3 2 = 1 + 1 + 2 A 2 2 3 2
143 141 142 eqtrid A 0 π 2 2 1 + 2 A 2 2 3 2 = 1 + 1 + 2 A 2 2 3 2
144 139 143 eqtrd A 0 π 2 2 1 + A 2 2 3 2 = 1 + 1 + 2 A 2 2 3 2
145 29 29 124 mulassd A 0 π 2 2 2 A 2 2 3 = 2 2 A 2 2 3
146 55 oveq1i 2 2 A 2 2 3 = 4 A 2 2 3
147 145 146 eqtr3di A 0 π 2 2 2 A 2 2 3 = 4 A 2 2 3
148 144 147 oveq12d A 0 π 2 2 1 + A 2 2 3 2 2 2 A 2 2 3 = 1 + 1 + 2 A 2 2 3 2 - 4 A 2 2 3
149 115 119 120 148 assraddsubd A 0 π 2 2 1 + A 2 2 3 2 2 2 A 2 2 3 = 1 + 1 + 2 A 2 2 3 2 - 4 A 2 2 3
150 135 138 149 3eqtrd A 0 π 2 2 1 A 2 2 3 2 = 1 + 1 + 2 A 2 2 3 2 - 4 A 2 2 3
151 115 121 150 mvrladdd A 0 π 2 2 1 A 2 2 3 2 1 = 1 + 2 A 2 2 3 2 - 4 A 2 2 3
152 subcl 1 A 2 2 3 1 A 2 2 3
153 116 124 152 sylancr A 0 π 2 1 A 2 2 3
154 153 115 132 subdid A 0 π 2 1 A 2 2 3 1 2 A 2 2 3 = 1 A 2 2 3 1 1 A 2 2 3 2 A 2 2 3
155 153 mulid1d A 0 π 2 1 A 2 2 3 1 = 1 A 2 2 3
156 115 124 132 subdird A 0 π 2 1 A 2 2 3 2 A 2 2 3 = 1 2 A 2 2 3 A 2 2 3 2 A 2 2 3
157 132 mulid2d A 0 π 2 1 2 A 2 2 3 = 2 A 2 2 3
158 124 29 124 mul12d A 0 π 2 A 2 2 3 2 A 2 2 3 = 2 A 2 2 3 A 2 2 3
159 124 sqvald A 0 π 2 A 2 2 3 2 = A 2 2 3 A 2 2 3
160 159 oveq2d A 0 π 2 2 A 2 2 3 2 = 2 A 2 2 3 A 2 2 3
161 158 160 eqtr4d A 0 π 2 A 2 2 3 2 A 2 2 3 = 2 A 2 2 3 2
162 157 161 oveq12d A 0 π 2 1 2 A 2 2 3 A 2 2 3 2 A 2 2 3 = 2 A 2 2 3 2 A 2 2 3 2
163 156 162 eqtrd A 0 π 2 1 A 2 2 3 2 A 2 2 3 = 2 A 2 2 3 2 A 2 2 3 2
164 155 163 oveq12d A 0 π 2 1 A 2 2 3 1 1 A 2 2 3 2 A 2 2 3 = 1 - A 2 2 3 - 2 A 2 2 3 2 A 2 2 3 2
165 115 124 132 117 subadd4d A 0 π 2 1 - A 2 2 3 - 2 A 2 2 3 2 A 2 2 3 2 = 1 + 2 A 2 2 3 2 - A 2 2 3 + 2 A 2 2 3
166 df-3 3 = 2 + 1
167 28 116 addcomi 2 + 1 = 1 + 2
168 166 167 eqtri 3 = 1 + 2
169 168 oveq1i 3 A 2 2 3 = 1 + 2 A 2 2 3
170 125 oveq1d A 0 π 2 1 A 2 2 3 + 2 A 2 2 3 = A 2 2 3 + 2 A 2 2 3
171 115 124 29 170 joinlmuladdmuld A 0 π 2 1 + 2 A 2 2 3 = A 2 2 3 + 2 A 2 2 3
172 169 171 eqtrid A 0 π 2 3 A 2 2 3 = A 2 2 3 + 2 A 2 2 3
173 172 oveq2d A 0 π 2 1 + 2 A 2 2 3 2 - 3 A 2 2 3 = 1 + 2 A 2 2 3 2 - A 2 2 3 + 2 A 2 2 3
174 165 173 eqtr4d A 0 π 2 1 - A 2 2 3 - 2 A 2 2 3 2 A 2 2 3 2 = 1 + 2 A 2 2 3 2 - 3 A 2 2 3
175 154 164 174 3eqtrd A 0 π 2 1 A 2 2 3 1 2 A 2 2 3 = 1 + 2 A 2 2 3 2 - 3 A 2 2 3
176 114 151 175 3brtr4d A 0 π 2 2 1 A 2 2 3 2 1 < 1 A 2 2 3 1 2 A 2 2 3
177 2 25 26 91 176 lttrd A 0 π 2 cos A < 1 A 2 2 3 1 2 A 2 2 3
178 ltmul2 cos A 1 A 2 2 3 1 2 A 2 2 3 A 0 < A cos A < 1 A 2 2 3 1 2 A 2 2 3 A cos A < A 1 A 2 2 3 1 2 A 2 2 3
179 2 26 1 45 178 syl112anc A 0 π 2 cos A < 1 A 2 2 3 1 2 A 2 2 3 A cos A < A 1 A 2 2 3 1 2 A 2 2 3
180 177 179 mpbid A 0 π 2 A cos A < A 1 A 2 2 3 1 2 A 2 2 3
181 18 recnd A 0 π 2 1 2 A 2 2 3
182 27 153 181 mulassd A 0 π 2 A 1 A 2 2 3 1 2 A 2 2 3 = A 1 A 2 2 3 1 2 A 2 2 3
183 180 182 breqtrrd A 0 π 2 A cos A < A 1 A 2 2 3 1 2 A 2 2 3
184 13 38 remulcld A 0 π 2 A 1 A 2 2 3 cos A 2
185 74 simpld A 0 π 2 1 2 A 2 2 3 < cos A 2
186 1 12 45 83 mulgt0d A 0 π 2 0 < A 1 A 2 2 3
187 ltmul2 1 2 A 2 2 3 cos A 2 A 1 A 2 2 3 0 < A 1 A 2 2 3 1 2 A 2 2 3 < cos A 2 A 1 A 2 2 3 1 2 A 2 2 3 < A 1 A 2 2 3 cos A 2
188 18 38 13 186 187 syl112anc A 0 π 2 1 2 A 2 2 3 < cos A 2 A 1 A 2 2 3 1 2 A 2 2 3 < A 1 A 2 2 3 cos A 2
189 185 188 mpbid A 0 π 2 A 1 A 2 2 3 1 2 A 2 2 3 < A 1 A 2 2 3 cos A 2
190 29 34 153 mulassd A 0 π 2 2 A 2 1 A 2 2 3 = 2 A 2 1 A 2 2 3
191 32 oveq1d A 0 π 2 2 A 2 1 A 2 2 3 = A 1 A 2 2 3
192 34 115 124 subdid A 0 π 2 A 2 1 A 2 2 3 = A 2 1 A 2 A 2 2 3
193 34 mulid1d A 0 π 2 A 2 1 = A 2
194 166 oveq2i A 2 3 = A 2 2 + 1
195 2nn0 2 0
196 expp1 A 2 2 0 A 2 2 + 1 = A 2 2 A 2
197 34 195 196 sylancl A 0 π 2 A 2 2 + 1 = A 2 2 A 2
198 194 197 eqtrid A 0 π 2 A 2 3 = A 2 2 A 2
199 7 recnd A 0 π 2 A 2 2
200 199 34 mulcomd A 0 π 2 A 2 2 A 2 = A 2 A 2 2
201 198 200 eqtrd A 0 π 2 A 2 3 = A 2 A 2 2
202 201 oveq1d A 0 π 2 A 2 3 3 = A 2 A 2 2 3
203 3cn 3
204 203 a1i A 0 π 2 3
205 3ne0 3 0
206 205 a1i A 0 π 2 3 0
207 34 199 204 206 divassd A 0 π 2 A 2 A 2 2 3 = A 2 A 2 2 3
208 202 207 eqtr2d A 0 π 2 A 2 A 2 2 3 = A 2 3 3
209 193 208 oveq12d A 0 π 2 A 2 1 A 2 A 2 2 3 = A 2 A 2 3 3
210 192 209 eqtrd A 0 π 2 A 2 1 A 2 2 3 = A 2 A 2 3 3
211 210 oveq2d A 0 π 2 2 A 2 1 A 2 2 3 = 2 A 2 A 2 3 3
212 190 191 211 3eqtr3d A 0 π 2 A 1 A 2 2 3 = 2 A 2 A 2 3 3
213 sin01bnd A 2 0 1 A 2 A 2 3 3 < sin A 2 sin A 2 < A 2
214 72 213 syl A 0 π 2 A 2 A 2 3 3 < sin A 2 sin A 2 < A 2
215 214 simpld A 0 π 2 A 2 A 2 3 3 < sin A 2
216 3nn0 3 0
217 reexpcl A 2 3 0 A 2 3
218 6 216 217 sylancl A 0 π 2 A 2 3
219 nndivre A 2 3 3 A 2 3 3
220 218 8 219 sylancl A 0 π 2 A 2 3 3
221 6 220 resubcld A 0 π 2 A 2 A 2 3 3
222 6 resincld A 0 π 2 sin A 2
223 ltmul2 A 2 A 2 3 3 sin A 2 2 0 < 2 A 2 A 2 3 3 < sin A 2 2 A 2 A 2 3 3 < 2 sin A 2
224 221 222 43 47 223 syl112anc A 0 π 2 A 2 A 2 3 3 < sin A 2 2 A 2 A 2 3 3 < 2 sin A 2
225 215 224 mpbid A 0 π 2 2 A 2 A 2 3 3 < 2 sin A 2
226 212 225 eqbrtrd A 0 π 2 A 1 A 2 2 3 < 2 sin A 2
227 remulcl 2 sin A 2 2 sin A 2
228 14 222 227 sylancr A 0 π 2 2 sin A 2
229 ltmul1 A 1 A 2 2 3 2 sin A 2 cos A 2 0 < cos A 2 A 1 A 2 2 3 < 2 sin A 2 A 1 A 2 2 3 cos A 2 < 2 sin A 2 cos A 2
230 13 228 38 77 229 syl112anc A 0 π 2 A 1 A 2 2 3 < 2 sin A 2 A 1 A 2 2 3 cos A 2 < 2 sin A 2 cos A 2
231 226 230 mpbid A 0 π 2 A 1 A 2 2 3 cos A 2 < 2 sin A 2 cos A 2
232 222 recnd A 0 π 2 sin A 2
233 38 recnd A 0 π 2 cos A 2
234 29 232 233 mulassd A 0 π 2 2 sin A 2 cos A 2 = 2 sin A 2 cos A 2
235 sin2t A 2 sin 2 A 2 = 2 sin A 2 cos A 2
236 34 235 syl A 0 π 2 sin 2 A 2 = 2 sin A 2 cos A 2
237 32 fveq2d A 0 π 2 sin 2 A 2 = sin A
238 234 236 237 3eqtr2rd A 0 π 2 sin A = 2 sin A 2 cos A 2
239 231 238 breqtrrd A 0 π 2 A 1 A 2 2 3 cos A 2 < sin A
240 19 184 20 189 239 lttrd A 0 π 2 A 1 A 2 2 3 1 2 A 2 2 3 < sin A
241 3 19 20 183 240 lttrd A 0 π 2 A cos A < sin A
242 sincosq1sgn A 0 π 2 0 < sin A 0 < cos A
243 242 simprd A 0 π 2 0 < cos A
244 ltmuldiv A sin A cos A 0 < cos A A cos A < sin A A < sin A cos A
245 1 20 2 243 244 syl112anc A 0 π 2 A cos A < sin A A < sin A cos A
246 241 245 mpbid A 0 π 2 A < sin A cos A
247 243 gt0ne0d A 0 π 2 cos A 0
248 tanval A cos A 0 tan A = sin A cos A
249 27 247 248 syl2anc A 0 π 2 tan A = sin A cos A
250 246 249 breqtrrd A 0 π 2 A < tan A