Metamath Proof Explorer


Theorem tanhbnd

Description: The hyperbolic tangent of a real number is bounded by 1 . (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion tanhbnd A tan i A i 1 1

Proof

Step Hyp Ref Expression
1 retanhcl A tan i A i
2 ax-icn i
3 recn A A
4 mulcl i A i A
5 2 3 4 sylancr A i A
6 rpcoshcl A cos i A +
7 6 rpne0d A cos i A 0
8 5 7 tancld A tan i A
9 2 a1i A i
10 ine0 i 0
11 10 a1i A i 0
12 8 9 11 divnegd A tan i A i = tan i A i
13 mulneg2 i A i A = i A
14 2 3 13 sylancr A i A = i A
15 14 fveq2d A tan i A = tan i A
16 tanneg i A cos i A 0 tan i A = tan i A
17 5 7 16 syl2anc A tan i A = tan i A
18 15 17 eqtrd A tan i A = tan i A
19 18 oveq1d A tan i A i = tan i A i
20 12 19 eqtr4d A tan i A i = tan i A i
21 renegcl A A
22 tanhlt1 A tan i A i < 1
23 21 22 syl A tan i A i < 1
24 20 23 eqbrtrd A tan i A i < 1
25 1re 1
26 ltnegcon1 tan i A i 1 tan i A i < 1 1 < tan i A i
27 1 25 26 sylancl A tan i A i < 1 1 < tan i A i
28 24 27 mpbid A 1 < tan i A i
29 tanhlt1 A tan i A i < 1
30 neg1rr 1
31 30 rexri 1 *
32 25 rexri 1 *
33 elioo2 1 * 1 * tan i A i 1 1 tan i A i 1 < tan i A i tan i A i < 1
34 31 32 33 mp2an tan i A i 1 1 tan i A i 1 < tan i A i tan i A i < 1
35 1 28 29 34 syl3anbrc A tan i A i 1 1