Metamath Proof Explorer


Theorem tanneg

Description: The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014)

Ref Expression
Assertion tanneg A cos A 0 tan A = tan A

Proof

Step Hyp Ref Expression
1 coscl A cos A
2 sincl A sin A
3 divneg sin A cos A cos A 0 sin A cos A = sin A cos A
4 2 3 syl3an1 A cos A cos A 0 sin A cos A = sin A cos A
5 1 4 syl3an2 A A cos A 0 sin A cos A = sin A cos A
6 5 3anidm12 A cos A 0 sin A cos A = sin A cos A
7 tanval A cos A 0 tan A = sin A cos A
8 7 negeqd A cos A 0 tan A = sin A cos A
9 negcl A A
10 cosneg A cos A = cos A
11 10 adantr A cos A 0 cos A = cos A
12 simpr A cos A 0 cos A 0
13 11 12 eqnetrd A cos A 0 cos A 0
14 tanval A cos A 0 tan A = sin A cos A
15 9 13 14 syl2an2r A cos A 0 tan A = sin A cos A
16 sinneg A sin A = sin A
17 16 10 oveq12d A sin A cos A = sin A cos A
18 17 adantr A cos A 0 sin A cos A = sin A cos A
19 15 18 eqtrd A cos A 0 tan A = sin A cos A
20 6 8 19 3eqtr4rd A cos A 0 tan A = tan A