Metamath Proof Explorer


Theorem tanrpcl

Description: Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014)

Ref Expression
Assertion tanrpcl A 0 π 2 tan A +

Proof

Step Hyp Ref Expression
1 elioore A 0 π 2 A
2 1 recnd A 0 π 2 A
3 1 recoscld A 0 π 2 cos A
4 sincosq1sgn A 0 π 2 0 < sin A 0 < cos A
5 4 simprd A 0 π 2 0 < cos A
6 3 5 elrpd A 0 π 2 cos A +
7 6 rpne0d A 0 π 2 cos A 0
8 tanval A cos A 0 tan A = sin A cos A
9 2 7 8 syl2anc A 0 π 2 tan A = sin A cos A
10 1 resincld A 0 π 2 sin A
11 4 simpld A 0 π 2 0 < sin A
12 10 11 elrpd A 0 π 2 sin A +
13 12 6 rpdivcld A 0 π 2 sin A cos A +
14 9 13 eqeltrd A 0 π 2 tan A +