Database
REAL AND COMPLEX NUMBERS
Elementary trigonometry
The exponential, sine, and cosine functions
tanval
Next ⟩
tancl
Metamath Proof Explorer
Ascii
Unicode
Theorem
tanval
Description:
Value of the tangent function.
(Contributed by
Mario Carneiro
, 14-Mar-2014)
Ref
Expression
Assertion
tanval
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
tan
⁡
A
=
sin
⁡
A
cos
⁡
A
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
A
∈
ℂ
2
coscl
⊢
A
∈
ℂ
→
cos
⁡
A
∈
ℂ
3
2
anim1i
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
cos
⁡
A
∈
ℂ
∧
cos
⁡
A
≠
0
4
eldifsn
⊢
cos
⁡
A
∈
ℂ
∖
0
↔
cos
⁡
A
∈
ℂ
∧
cos
⁡
A
≠
0
5
3
4
sylibr
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
cos
⁡
A
∈
ℂ
∖
0
6
cosf
⊢
cos
:
ℂ
⟶
ℂ
7
ffn
⊢
cos
:
ℂ
⟶
ℂ
→
cos
Fn
ℂ
8
elpreima
⊢
cos
Fn
ℂ
→
A
∈
cos
-1
ℂ
∖
0
↔
A
∈
ℂ
∧
cos
⁡
A
∈
ℂ
∖
0
9
6
7
8
mp2b
⊢
A
∈
cos
-1
ℂ
∖
0
↔
A
∈
ℂ
∧
cos
⁡
A
∈
ℂ
∖
0
10
1
5
9
sylanbrc
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
A
∈
cos
-1
ℂ
∖
0
11
fveq2
⊢
x
=
A
→
sin
⁡
x
=
sin
⁡
A
12
fveq2
⊢
x
=
A
→
cos
⁡
x
=
cos
⁡
A
13
11
12
oveq12d
⊢
x
=
A
→
sin
⁡
x
cos
⁡
x
=
sin
⁡
A
cos
⁡
A
14
df-tan
⊢
tan
=
x
∈
cos
-1
ℂ
∖
0
⟼
sin
⁡
x
cos
⁡
x
15
ovex
⊢
sin
⁡
A
cos
⁡
A
∈
V
16
13
14
15
fvmpt
⊢
A
∈
cos
-1
ℂ
∖
0
→
tan
⁡
A
=
sin
⁡
A
cos
⁡
A
17
10
16
syl
⊢
A
∈
ℂ
∧
cos
⁡
A
≠
0
→
tan
⁡
A
=
sin
⁡
A
cos
⁡
A