Metamath Proof Explorer


Theorem tanval

Description: Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Assertion tanval A cos A 0 tan A = sin A cos A

Proof

Step Hyp Ref Expression
1 simpl A cos A 0 A
2 coscl A cos A
3 2 anim1i A cos A 0 cos A cos A 0
4 eldifsn cos A 0 cos A cos A 0
5 3 4 sylibr A cos A 0 cos A 0
6 cosf cos :
7 ffn cos : cos Fn
8 elpreima cos Fn A cos -1 0 A cos A 0
9 6 7 8 mp2b A cos -1 0 A cos A 0
10 1 5 9 sylanbrc A cos A 0 A cos -1 0
11 fveq2 x = A sin x = sin A
12 fveq2 x = A cos x = cos A
13 11 12 oveq12d x = A sin x cos x = sin A cos A
14 df-tan tan = x cos -1 0 sin x cos x
15 ovex sin A cos A V
16 13 14 15 fvmpt A cos -1 0 tan A = sin A cos A
17 10 16 syl A cos A 0 tan A = sin A cos A