Metamath Proof Explorer


Theorem tanval2

Description: Express the tangent function directly in terms of exp . (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion tanval2 A cos A 0 tan A = e i A e i A i e i A + e i A

Proof

Step Hyp Ref Expression
1 tanval A cos A 0 tan A = sin A cos A
2 2cn 2
3 ax-icn i
4 2 3 mulcomi 2 i = i 2
5 4 oveq2i e i A e i A 2 i = e i A e i A i 2
6 sinval A sin A = e i A e i A 2 i
7 6 adantr A cos A 0 sin A = e i A e i A 2 i
8 simpl A cos A 0 A
9 mulcl i A i A
10 3 8 9 sylancr A cos A 0 i A
11 efcl i A e i A
12 10 11 syl A cos A 0 e i A
13 negicn i
14 mulcl i A i A
15 13 8 14 sylancr A cos A 0 i A
16 efcl i A e i A
17 15 16 syl A cos A 0 e i A
18 12 17 subcld A cos A 0 e i A e i A
19 3 a1i A cos A 0 i
20 2 a1i A cos A 0 2
21 ine0 i 0
22 21 a1i A cos A 0 i 0
23 2ne0 2 0
24 23 a1i A cos A 0 2 0
25 18 19 20 22 24 divdiv1d A cos A 0 e i A e i A i 2 = e i A e i A i 2
26 5 7 25 3eqtr4a A cos A 0 sin A = e i A e i A i 2
27 cosval A cos A = e i A + e i A 2
28 27 adantr A cos A 0 cos A = e i A + e i A 2
29 26 28 oveq12d A cos A 0 sin A cos A = e i A e i A i 2 e i A + e i A 2
30 1 29 eqtrd A cos A 0 tan A = e i A e i A i 2 e i A + e i A 2
31 18 19 22 divcld A cos A 0 e i A e i A i
32 12 17 addcld A cos A 0 e i A + e i A
33 simpr A cos A 0 cos A 0
34 28 33 eqnetrrd A cos A 0 e i A + e i A 2 0
35 32 20 24 diveq0ad A cos A 0 e i A + e i A 2 = 0 e i A + e i A = 0
36 35 necon3bid A cos A 0 e i A + e i A 2 0 e i A + e i A 0
37 34 36 mpbid A cos A 0 e i A + e i A 0
38 31 32 20 37 24 divcan7d A cos A 0 e i A e i A i 2 e i A + e i A 2 = e i A e i A i e i A + e i A
39 18 19 32 22 37 divdiv1d A cos A 0 e i A e i A i e i A + e i A = e i A e i A i e i A + e i A
40 30 38 39 3eqtrd A cos A 0 tan A = e i A e i A i e i A + e i A