Step |
Hyp |
Ref |
Expression |
1 |
|
tanval |
|
2 |
|
2cn |
|
3 |
|
ax-icn |
|
4 |
2 3
|
mulcomi |
|
5 |
4
|
oveq2i |
|
6 |
|
sinval |
|
7 |
6
|
adantr |
|
8 |
|
simpl |
|
9 |
|
mulcl |
|
10 |
3 8 9
|
sylancr |
|
11 |
|
efcl |
|
12 |
10 11
|
syl |
|
13 |
|
negicn |
|
14 |
|
mulcl |
|
15 |
13 8 14
|
sylancr |
|
16 |
|
efcl |
|
17 |
15 16
|
syl |
|
18 |
12 17
|
subcld |
|
19 |
3
|
a1i |
|
20 |
2
|
a1i |
|
21 |
|
ine0 |
|
22 |
21
|
a1i |
|
23 |
|
2ne0 |
|
24 |
23
|
a1i |
|
25 |
18 19 20 22 24
|
divdiv1d |
|
26 |
5 7 25
|
3eqtr4a |
|
27 |
|
cosval |
|
28 |
27
|
adantr |
|
29 |
26 28
|
oveq12d |
|
30 |
1 29
|
eqtrd |
|
31 |
18 19 22
|
divcld |
|
32 |
12 17
|
addcld |
|
33 |
|
simpr |
|
34 |
28 33
|
eqnetrrd |
|
35 |
32 20 24
|
diveq0ad |
|
36 |
35
|
necon3bid |
|
37 |
34 36
|
mpbid |
|
38 |
31 32 20 37 24
|
divcan7d |
|
39 |
18 19 32 22 37
|
divdiv1d |
|
40 |
30 38 39
|
3eqtrd |
|