Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|
2 |
|
simpl |
|
3 |
|
mulcl |
|
4 |
1 2 3
|
sylancr |
|
5 |
|
efcl |
|
6 |
4 5
|
syl |
|
7 |
|
negicn |
|
8 |
|
mulcl |
|
9 |
7 2 8
|
sylancr |
|
10 |
|
efcl |
|
11 |
9 10
|
syl |
|
12 |
6 11
|
subcld |
|
13 |
6 11
|
addcld |
|
14 |
|
mulcl |
|
15 |
1 13 14
|
sylancr |
|
16 |
|
2z |
|
17 |
|
efexp |
|
18 |
4 16 17
|
sylancl |
|
19 |
6
|
sqvald |
|
20 |
18 19
|
eqtrd |
|
21 |
|
mulneg1 |
|
22 |
1 2 21
|
sylancr |
|
23 |
22
|
fveq2d |
|
24 |
23
|
oveq2d |
|
25 |
|
efcan |
|
26 |
4 25
|
syl |
|
27 |
24 26
|
eqtr2d |
|
28 |
20 27
|
oveq12d |
|
29 |
6 6 11
|
adddid |
|
30 |
28 29
|
eqtr4d |
|
31 |
30
|
oveq2d |
|
32 |
1
|
a1i |
|
33 |
32 6 13
|
mul12d |
|
34 |
31 33
|
eqtrd |
|
35 |
|
2cn |
|
36 |
|
mulcl |
|
37 |
35 4 36
|
sylancr |
|
38 |
|
efcl |
|
39 |
37 38
|
syl |
|
40 |
|
ax-1cn |
|
41 |
|
addcl |
|
42 |
39 40 41
|
sylancl |
|
43 |
|
ine0 |
|
44 |
43
|
a1i |
|
45 |
|
simpr |
|
46 |
32 42 44 45
|
mulne0d |
|
47 |
34 46
|
eqnetrrd |
|
48 |
6 15 47
|
mulne0bbd |
|
49 |
|
efne0 |
|
50 |
4 49
|
syl |
|
51 |
12 15 6 48 50
|
divcan5d |
|
52 |
20 27
|
oveq12d |
|
53 |
6 6 11
|
subdid |
|
54 |
52 53
|
eqtr4d |
|
55 |
54 34
|
oveq12d |
|
56 |
|
cosval |
|
57 |
56
|
adantr |
|
58 |
|
2cnd |
|
59 |
32 13 48
|
mulne0bbd |
|
60 |
|
2ne0 |
|
61 |
60
|
a1i |
|
62 |
13 58 59 61
|
divne0d |
|
63 |
57 62
|
eqnetrd |
|
64 |
|
tanval2 |
|
65 |
63 64
|
syldan |
|
66 |
51 55 65
|
3eqtr4rd |
|