Metamath Proof Explorer


Theorem taylf

Description: The Taylor series defines a function on a subset of the complex numbers. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φ S
taylfval.f φ F : A
taylfval.a φ A S
taylfval.n φ N 0 N = +∞
taylfval.b φ k 0 N B dom S D n F k
taylfval.t T = N S Tayl F B
Assertion taylf φ T : dom T

Proof

Step Hyp Ref Expression
1 taylfval.s φ S
2 taylfval.f φ F : A
3 taylfval.a φ A S
4 taylfval.n φ N 0 N = +∞
5 taylfval.b φ k 0 N B dom S D n F k
6 taylfval.t T = N S Tayl F B
7 1 2 3 4 5 6 taylfval φ T = x x × fld tsums k 0 N S D n F k B k ! x B k
8 simpr φ x x
9 8 snssd φ x x
10 1 2 3 4 5 taylfvallem φ x fld tsums k 0 N S D n F k B k ! x B k
11 xpss12 x fld tsums k 0 N S D n F k B k ! x B k x × fld tsums k 0 N S D n F k B k ! x B k ×
12 9 10 11 syl2anc φ x x × fld tsums k 0 N S D n F k B k ! x B k ×
13 12 ralrimiva φ x x × fld tsums k 0 N S D n F k B k ! x B k ×
14 iunss x x × fld tsums k 0 N S D n F k B k ! x B k × x x × fld tsums k 0 N S D n F k B k ! x B k ×
15 13 14 sylibr φ x x × fld tsums k 0 N S D n F k B k ! x B k ×
16 7 15 eqsstrd φ T ×
17 relxp Rel ×
18 relss T × Rel × Rel T
19 16 17 18 mpisyl φ Rel T
20 1 2 3 4 5 6 eltayl φ x T y x y fld tsums k 0 N S D n F k B k ! x B k
21 20 biimpd φ x T y x y fld tsums k 0 N S D n F k B k ! x B k
22 21 alrimiv φ y x T y x y fld tsums k 0 N S D n F k B k ! x B k
23 cnfldbas = Base fld
24 cnring fld Ring
25 ringcmn fld Ring fld CMnd
26 24 25 mp1i φ x fld CMnd
27 cnfldtps fld TopSp
28 27 a1i φ x fld TopSp
29 ovex 0 N V
30 29 inex1 0 N V
31 30 a1i φ x 0 N V
32 1 2 3 4 5 taylfvallem1 φ x k 0 N S D n F k B k ! x B k
33 32 fmpttd φ x k 0 N S D n F k B k ! x B k : 0 N
34 eqid TopOpen fld = TopOpen fld
35 34 cnfldhaus TopOpen fld Haus
36 35 a1i φ x TopOpen fld Haus
37 23 26 28 31 33 34 36 haustsms φ x * y y fld tsums k 0 N S D n F k B k ! x B k
38 37 ex φ x * y y fld tsums k 0 N S D n F k B k ! x B k
39 moanimv * y x y fld tsums k 0 N S D n F k B k ! x B k x * y y fld tsums k 0 N S D n F k B k ! x B k
40 38 39 sylibr φ * y x y fld tsums k 0 N S D n F k B k ! x B k
41 moim y x T y x y fld tsums k 0 N S D n F k B k ! x B k * y x y fld tsums k 0 N S D n F k B k ! x B k * y x T y
42 22 40 41 sylc φ * y x T y
43 42 alrimiv φ x * y x T y
44 dffun6 Fun T Rel T x * y x T y
45 19 43 44 sylanbrc φ Fun T
46 45 funfnd φ T Fn dom T
47 rnss T × ran T ran ×
48 16 47 syl φ ran T ran ×
49 rnxpss ran ×
50 48 49 sstrdi φ ran T
51 df-f T : dom T T Fn dom T ran T
52 46 50 51 sylanbrc φ T : dom T