Metamath Proof Explorer


Theorem taylfval

Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: S is the base set with respect to evaluate the derivatives (generally RR or CC ), F is the function we are approximating, at point B , to order N . The result is a polynomial function of x .

This "extended" version of taylpfval additionally handles the case N = +oo , in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φ S
taylfval.f φ F : A
taylfval.a φ A S
taylfval.n φ N 0 N = +∞
taylfval.b φ k 0 N B dom S D n F k
taylfval.t T = N S Tayl F B
Assertion taylfval φ T = x x × fld tsums k 0 N S D n F k B k ! x B k

Proof

Step Hyp Ref Expression
1 taylfval.s φ S
2 taylfval.f φ F : A
3 taylfval.a φ A S
4 taylfval.n φ N 0 N = +∞
5 taylfval.b φ k 0 N B dom S D n F k
6 taylfval.t T = N S Tayl F B
7 df-tayl Tayl = s , f 𝑝𝑚 s n 0 +∞ , a k 0 n dom s D n f k x x × fld tsums k 0 n s D n f k a k ! x a k
8 7 a1i φ Tayl = s , f 𝑝𝑚 s n 0 +∞ , a k 0 n dom s D n f k x x × fld tsums k 0 n s D n f k a k ! x a k
9 eqidd φ s = S f = F 0 +∞ = 0 +∞
10 oveq12 s = S f = F s D n f = S D n F
11 10 ad2antlr φ s = S f = F k 0 n s D n f = S D n F
12 11 fveq1d φ s = S f = F k 0 n s D n f k = S D n F k
13 12 dmeqd φ s = S f = F k 0 n dom s D n f k = dom S D n F k
14 13 iineq2dv φ s = S f = F k 0 n dom s D n f k = k 0 n dom S D n F k
15 12 fveq1d φ s = S f = F k 0 n s D n f k a = S D n F k a
16 15 oveq1d φ s = S f = F k 0 n s D n f k a k ! = S D n F k a k !
17 16 oveq1d φ s = S f = F k 0 n s D n f k a k ! x a k = S D n F k a k ! x a k
18 17 mpteq2dva φ s = S f = F k 0 n s D n f k a k ! x a k = k 0 n S D n F k a k ! x a k
19 18 oveq2d φ s = S f = F fld tsums k 0 n s D n f k a k ! x a k = fld tsums k 0 n S D n F k a k ! x a k
20 19 xpeq2d φ s = S f = F x × fld tsums k 0 n s D n f k a k ! x a k = x × fld tsums k 0 n S D n F k a k ! x a k
21 20 iuneq2d φ s = S f = F x x × fld tsums k 0 n s D n f k a k ! x a k = x x × fld tsums k 0 n S D n F k a k ! x a k
22 9 14 21 mpoeq123dv φ s = S f = F n 0 +∞ , a k 0 n dom s D n f k x x × fld tsums k 0 n s D n f k a k ! x a k = n 0 +∞ , a k 0 n dom S D n F k x x × fld tsums k 0 n S D n F k a k ! x a k
23 simpr φ s = S s = S
24 23 oveq2d φ s = S 𝑝𝑚 s = 𝑝𝑚 S
25 cnex V
26 25 a1i φ V
27 elpm2r V S F : A A S F 𝑝𝑚 S
28 26 1 2 3 27 syl22anc φ F 𝑝𝑚 S
29 nn0ex 0 V
30 snex +∞ V
31 29 30 unex 0 +∞ V
32 0xr 0 *
33 nn0ssre 0
34 ressxr *
35 33 34 sstri 0 *
36 pnfxr +∞ *
37 snssi +∞ * +∞ *
38 36 37 ax-mp +∞ *
39 35 38 unssi 0 +∞ *
40 39 sseli n 0 +∞ n *
41 elun n 0 +∞ n 0 n +∞
42 nn0ge0 n 0 0 n
43 0lepnf 0 +∞
44 elsni n +∞ n = +∞
45 43 44 breqtrrid n +∞ 0 n
46 42 45 jaoi n 0 n +∞ 0 n
47 41 46 sylbi n 0 +∞ 0 n
48 lbicc2 0 * n * 0 n 0 0 n
49 32 40 47 48 mp3an2i n 0 +∞ 0 0 n
50 0z 0
51 inelcm 0 0 n 0 0 n
52 49 50 51 sylancl n 0 +∞ 0 n
53 fvex S D n F k V
54 53 dmex dom S D n F k V
55 54 rgenw k 0 n dom S D n F k V
56 iinexg 0 n k 0 n dom S D n F k V k 0 n dom S D n F k V
57 52 55 56 sylancl n 0 +∞ k 0 n dom S D n F k V
58 57 rgen n 0 +∞ k 0 n dom S D n F k V
59 eqid n 0 +∞ , a k 0 n dom S D n F k x x × fld tsums k 0 n S D n F k a k ! x a k = n 0 +∞ , a k 0 n dom S D n F k x x × fld tsums k 0 n S D n F k a k ! x a k
60 59 mpoexxg 0 +∞ V n 0 +∞ k 0 n dom S D n F k V n 0 +∞ , a k 0 n dom S D n F k x x × fld tsums k 0 n S D n F k a k ! x a k V
61 31 58 60 mp2an n 0 +∞ , a k 0 n dom S D n F k x x × fld tsums k 0 n S D n F k a k ! x a k V
62 61 a1i φ n 0 +∞ , a k 0 n dom S D n F k x x × fld tsums k 0 n S D n F k a k ! x a k V
63 8 22 24 1 28 62 ovmpodx φ S Tayl F = n 0 +∞ , a k 0 n dom S D n F k x x × fld tsums k 0 n S D n F k a k ! x a k
64 simprl φ n = N a = B n = N
65 64 oveq2d φ n = N a = B 0 n = 0 N
66 65 ineq1d φ n = N a = B 0 n = 0 N
67 simprr φ n = N a = B a = B
68 67 fveq2d φ n = N a = B S D n F k a = S D n F k B
69 68 oveq1d φ n = N a = B S D n F k a k ! = S D n F k B k !
70 67 oveq2d φ n = N a = B x a = x B
71 70 oveq1d φ n = N a = B x a k = x B k
72 69 71 oveq12d φ n = N a = B S D n F k a k ! x a k = S D n F k B k ! x B k
73 66 72 mpteq12dv φ n = N a = B k 0 n S D n F k a k ! x a k = k 0 N S D n F k B k ! x B k
74 73 oveq2d φ n = N a = B fld tsums k 0 n S D n F k a k ! x a k = fld tsums k 0 N S D n F k B k ! x B k
75 74 xpeq2d φ n = N a = B x × fld tsums k 0 n S D n F k a k ! x a k = x × fld tsums k 0 N S D n F k B k ! x B k
76 75 iuneq2d φ n = N a = B x x × fld tsums k 0 n S D n F k a k ! x a k = x x × fld tsums k 0 N S D n F k B k ! x B k
77 simpr φ n = N n = N
78 77 oveq2d φ n = N 0 n = 0 N
79 78 ineq1d φ n = N 0 n = 0 N
80 iineq1 0 n = 0 N k 0 n dom S D n F k = k 0 N dom S D n F k
81 79 80 syl φ n = N k 0 n dom S D n F k = k 0 N dom S D n F k
82 pnfex +∞ V
83 82 elsn2 N +∞ N = +∞
84 83 orbi2i N 0 N +∞ N 0 N = +∞
85 4 84 sylibr φ N 0 N +∞
86 elun N 0 +∞ N 0 N +∞
87 85 86 sylibr φ N 0 +∞
88 5 ralrimiva φ k 0 N B dom S D n F k
89 oveq2 n = N 0 n = 0 N
90 89 ineq1d n = N 0 n = 0 N
91 90 neeq1d n = N 0 n 0 N
92 91 52 vtoclga N 0 +∞ 0 N
93 87 92 syl φ 0 N
94 r19.2z 0 N k 0 N B dom S D n F k k 0 N B dom S D n F k
95 93 88 94 syl2anc φ k 0 N B dom S D n F k
96 elex B dom S D n F k B V
97 96 rexlimivw k 0 N B dom S D n F k B V
98 eliin B V B k 0 N dom S D n F k k 0 N B dom S D n F k
99 95 97 98 3syl φ B k 0 N dom S D n F k k 0 N B dom S D n F k
100 88 99 mpbird φ B k 0 N dom S D n F k
101 snssi x x
102 1 2 3 4 5 taylfvallem φ x fld tsums k 0 N S D n F k B k ! x B k
103 xpss12 x fld tsums k 0 N S D n F k B k ! x B k x × fld tsums k 0 N S D n F k B k ! x B k ×
104 101 102 103 syl2an2 φ x x × fld tsums k 0 N S D n F k B k ! x B k ×
105 104 ralrimiva φ x x × fld tsums k 0 N S D n F k B k ! x B k ×
106 iunss x x × fld tsums k 0 N S D n F k B k ! x B k × x x × fld tsums k 0 N S D n F k B k ! x B k ×
107 105 106 sylibr φ x x × fld tsums k 0 N S D n F k B k ! x B k ×
108 25 25 xpex × V
109 108 ssex x x × fld tsums k 0 N S D n F k B k ! x B k × x x × fld tsums k 0 N S D n F k B k ! x B k V
110 107 109 syl φ x x × fld tsums k 0 N S D n F k B k ! x B k V
111 63 76 81 87 100 110 ovmpodx φ N S Tayl F B = x x × fld tsums k 0 N S D n F k B k ! x B k
112 6 111 syl5eq φ T = x x × fld tsums k 0 N S D n F k B k ! x B k