Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Taylor polynomials and Taylor's theorem
taylfvallem
Next ⟩
taylfval
Metamath Proof Explorer
Ascii
Unicode
Theorem
taylfvallem
Description:
Lemma for
taylfval
.
(Contributed by
Mario Carneiro
, 30-Dec-2016)
Ref
Expression
Hypotheses
taylfval.s
⊢
φ
→
S
∈
ℝ
ℂ
taylfval.f
⊢
φ
→
F
:
A
⟶
ℂ
taylfval.a
⊢
φ
→
A
⊆
S
taylfval.n
⊢
φ
→
N
∈
ℕ
0
∨
N
=
+∞
taylfval.b
⊢
φ
∧
k
∈
0
N
∩
ℤ
→
B
∈
dom
⁡
S
D
n
F
⁡
k
Assertion
taylfvallem
⊢
φ
∧
X
∈
ℂ
→
ℂ
fld
tsums
k
∈
0
N
∩
ℤ
⟼
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
⊆
ℂ
Proof
Step
Hyp
Ref
Expression
1
taylfval.s
⊢
φ
→
S
∈
ℝ
ℂ
2
taylfval.f
⊢
φ
→
F
:
A
⟶
ℂ
3
taylfval.a
⊢
φ
→
A
⊆
S
4
taylfval.n
⊢
φ
→
N
∈
ℕ
0
∨
N
=
+∞
5
taylfval.b
⊢
φ
∧
k
∈
0
N
∩
ℤ
→
B
∈
dom
⁡
S
D
n
F
⁡
k
6
cnfldbas
⊢
ℂ
=
Base
ℂ
fld
7
cnring
⊢
ℂ
fld
∈
Ring
8
ringcmn
⊢
ℂ
fld
∈
Ring
→
ℂ
fld
∈
CMnd
9
7
8
mp1i
⊢
φ
∧
X
∈
ℂ
→
ℂ
fld
∈
CMnd
10
cnfldtps
⊢
ℂ
fld
∈
TopSp
11
10
a1i
⊢
φ
∧
X
∈
ℂ
→
ℂ
fld
∈
TopSp
12
ovex
⊢
0
N
∈
V
13
12
inex1
⊢
0
N
∩
ℤ
∈
V
14
13
a1i
⊢
φ
∧
X
∈
ℂ
→
0
N
∩
ℤ
∈
V
15
1
2
3
4
5
taylfvallem1
⊢
φ
∧
X
∈
ℂ
∧
k
∈
0
N
∩
ℤ
→
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
∈
ℂ
16
15
fmpttd
⊢
φ
∧
X
∈
ℂ
→
k
∈
0
N
∩
ℤ
⟼
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
:
0
N
∩
ℤ
⟶
ℂ
17
6
9
11
14
16
tsmscl
⊢
φ
∧
X
∈
ℂ
→
ℂ
fld
tsums
k
∈
0
N
∩
ℤ
⟼
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
⊆
ℂ