Metamath Proof Explorer


Theorem taylfvallem

Description: Lemma for taylfval . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φ S
taylfval.f φ F : A
taylfval.a φ A S
taylfval.n φ N 0 N = +∞
taylfval.b φ k 0 N B dom S D n F k
Assertion taylfvallem φ X fld tsums k 0 N S D n F k B k ! X B k

Proof

Step Hyp Ref Expression
1 taylfval.s φ S
2 taylfval.f φ F : A
3 taylfval.a φ A S
4 taylfval.n φ N 0 N = +∞
5 taylfval.b φ k 0 N B dom S D n F k
6 cnfldbas = Base fld
7 cnring fld Ring
8 ringcmn fld Ring fld CMnd
9 7 8 mp1i φ X fld CMnd
10 cnfldtps fld TopSp
11 10 a1i φ X fld TopSp
12 ovex 0 N V
13 12 inex1 0 N V
14 13 a1i φ X 0 N V
15 1 2 3 4 5 taylfvallem1 φ X k 0 N S D n F k B k ! X B k
16 15 fmpttd φ X k 0 N S D n F k B k ! X B k : 0 N
17 6 9 11 14 16 tsmscl φ X fld tsums k 0 N S D n F k B k ! X B k