Metamath Proof Explorer


Theorem taylfvallem1

Description: Lemma for taylfval . (Contributed by Mario Carneiro, 30-Dec-2016)

Ref Expression
Hypotheses taylfval.s φ S
taylfval.f φ F : A
taylfval.a φ A S
taylfval.n φ N 0 N = +∞
taylfval.b φ k 0 N B dom S D n F k
Assertion taylfvallem1 φ X k 0 N S D n F k B k ! X B k

Proof

Step Hyp Ref Expression
1 taylfval.s φ S
2 taylfval.f φ F : A
3 taylfval.a φ A S
4 taylfval.n φ N 0 N = +∞
5 taylfval.b φ k 0 N B dom S D n F k
6 1 ad2antrr φ X k 0 N S
7 cnex V
8 7 a1i φ V
9 elpm2r V S F : A A S F 𝑝𝑚 S
10 8 1 2 3 9 syl22anc φ F 𝑝𝑚 S
11 10 ad2antrr φ X k 0 N F 𝑝𝑚 S
12 simpr φ X k 0 N k 0 N
13 12 elin2d φ X k 0 N k
14 12 elin1d φ X k 0 N k 0 N
15 0xr 0 *
16 nn0re N 0 N
17 16 rexrd N 0 N *
18 id N = +∞ N = +∞
19 pnfxr +∞ *
20 18 19 eqeltrdi N = +∞ N *
21 17 20 jaoi N 0 N = +∞ N *
22 4 21 syl φ N *
23 22 ad2antrr φ X k 0 N N *
24 elicc1 0 * N * k 0 N k * 0 k k N
25 15 23 24 sylancr φ X k 0 N k 0 N k * 0 k k N
26 14 25 mpbid φ X k 0 N k * 0 k k N
27 26 simp2d φ X k 0 N 0 k
28 elnn0z k 0 k 0 k
29 13 27 28 sylanbrc φ X k 0 N k 0
30 dvnf S F 𝑝𝑚 S k 0 S D n F k : dom S D n F k
31 6 11 29 30 syl3anc φ X k 0 N S D n F k : dom S D n F k
32 5 adantlr φ X k 0 N B dom S D n F k
33 31 32 ffvelrnd φ X k 0 N S D n F k B
34 29 faccld φ X k 0 N k !
35 34 nncnd φ X k 0 N k !
36 34 nnne0d φ X k 0 N k ! 0
37 33 35 36 divcld φ X k 0 N S D n F k B k !
38 simplr φ X k 0 N X
39 2 ad2antrr φ X k 0 N F : A
40 dvnbss S F 𝑝𝑚 S k 0 dom S D n F k dom F
41 6 11 29 40 syl3anc φ X k 0 N dom S D n F k dom F
42 39 41 fssdmd φ X k 0 N dom S D n F k A
43 recnprss S S
44 1 43 syl φ S
45 3 44 sstrd φ A
46 45 ad2antrr φ X k 0 N A
47 42 46 sstrd φ X k 0 N dom S D n F k
48 47 32 sseldd φ X k 0 N B
49 38 48 subcld φ X k 0 N X B
50 49 29 expcld φ X k 0 N X B k
51 37 50 mulcld φ X k 0 N S D n F k B k ! X B k