Metamath Proof Explorer


Theorem taylpf

Description: The Taylor polynomial is a function on the complex numbers (even if the base set of the original function is the reals). (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses taylpfval.s φ S
taylpfval.f φ F : A
taylpfval.a φ A S
taylpfval.n φ N 0
taylpfval.b φ B dom S D n F N
taylpfval.t T = N S Tayl F B
Assertion taylpf φ T :

Proof

Step Hyp Ref Expression
1 taylpfval.s φ S
2 taylpfval.f φ F : A
3 taylpfval.a φ A S
4 taylpfval.n φ N 0
5 taylpfval.b φ B dom S D n F N
6 taylpfval.t T = N S Tayl F B
7 1 2 3 4 5 6 taylpfval φ T = x k = 0 N S D n F k B k ! x B k
8 fzfid φ x 0 N Fin
9 1 2 3 4 5 taylplem2 φ x k 0 N S D n F k B k ! x B k
10 8 9 fsumcl φ x k = 0 N S D n F k B k ! x B k
11 7 10 fmpt3d φ T :