Metamath Proof Explorer


Theorem taylpfval

Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: S is the base set with respect to evaluate the derivatives (generally RR or CC ), F is the function we are approximating, at point B , to order N . The result is a polynomial function of x . (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses taylpfval.s φ S
taylpfval.f φ F : A
taylpfval.a φ A S
taylpfval.n φ N 0
taylpfval.b φ B dom S D n F N
taylpfval.t T = N S Tayl F B
Assertion taylpfval φ T = x k = 0 N S D n F k B k ! x B k

Proof

Step Hyp Ref Expression
1 taylpfval.s φ S
2 taylpfval.f φ F : A
3 taylpfval.a φ A S
4 taylpfval.n φ N 0
5 taylpfval.b φ B dom S D n F N
6 taylpfval.t T = N S Tayl F B
7 4 orcd φ N 0 N = +∞
8 1 2 3 4 5 taylplem1 φ k 0 N B dom S D n F k
9 1 2 3 7 8 6 taylfval φ T = x x × fld tsums k 0 N S D n F k B k ! x B k
10 cnfldbas = Base fld
11 cnfld0 0 = 0 fld
12 cnring fld Ring
13 ringcmn fld Ring fld CMnd
14 12 13 mp1i φ x fld CMnd
15 cnfldtps fld TopSp
16 15 a1i φ x fld TopSp
17 ovex 0 N V
18 17 inex1 0 N V
19 18 a1i φ x 0 N V
20 1 2 3 7 8 taylfvallem1 φ x k 0 N S D n F k B k ! x B k
21 20 fmpttd φ x k 0 N S D n F k B k ! x B k : 0 N
22 eqid k 0 N S D n F k B k ! x B k = k 0 N S D n F k B k ! x B k
23 0z 0
24 4 nn0zd φ N
25 fzval2 0 N 0 N = 0 N
26 23 24 25 sylancr φ 0 N = 0 N
27 26 adantr φ x 0 N = 0 N
28 fzfid φ x 0 N Fin
29 27 28 eqeltrrd φ x 0 N Fin
30 ovexd φ x k 0 N S D n F k B k ! x B k V
31 c0ex 0 V
32 31 a1i φ x 0 V
33 22 29 30 32 fsuppmptdm φ x finSupp 0 k 0 N S D n F k B k ! x B k
34 eqid TopOpen fld = TopOpen fld
35 34 cnfldhaus TopOpen fld Haus
36 35 a1i φ x TopOpen fld Haus
37 10 11 14 16 19 21 33 34 36 haustsmsid φ x fld tsums k 0 N S D n F k B k ! x B k = fld k 0 N S D n F k B k ! x B k
38 29 20 gsumfsum φ x fld k 0 N S D n F k B k ! x B k = k 0 N S D n F k B k ! x B k
39 27 sumeq1d φ x k = 0 N S D n F k B k ! x B k = k 0 N S D n F k B k ! x B k
40 38 39 eqtr4d φ x fld k 0 N S D n F k B k ! x B k = k = 0 N S D n F k B k ! x B k
41 40 sneqd φ x fld k 0 N S D n F k B k ! x B k = k = 0 N S D n F k B k ! x B k
42 37 41 eqtrd φ x fld tsums k 0 N S D n F k B k ! x B k = k = 0 N S D n F k B k ! x B k
43 42 xpeq2d φ x x × fld tsums k 0 N S D n F k B k ! x B k = x × k = 0 N S D n F k B k ! x B k
44 43 iuneq2dv φ x x × fld tsums k 0 N S D n F k B k ! x B k = x x × k = 0 N S D n F k B k ! x B k
45 9 44 eqtrd φ T = x x × k = 0 N S D n F k B k ! x B k
46 dfmpt3 x k = 0 N S D n F k B k ! x B k = x x × k = 0 N S D n F k B k ! x B k
47 45 46 eqtr4di φ T = x k = 0 N S D n F k B k ! x B k