Metamath Proof Explorer


Theorem taylplem1

Description: Lemma for taylpfval and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses taylpfval.s φ S
taylpfval.f φ F : A
taylpfval.a φ A S
taylpfval.n φ N 0
taylpfval.b φ B dom S D n F N
Assertion taylplem1 φ k 0 N B dom S D n F k

Proof

Step Hyp Ref Expression
1 taylpfval.s φ S
2 taylpfval.f φ F : A
3 taylpfval.a φ A S
4 taylpfval.n φ N 0
5 taylpfval.b φ B dom S D n F N
6 0z 0
7 4 nn0zd φ N
8 fzval2 0 N 0 N = 0 N
9 6 7 8 sylancr φ 0 N = 0 N
10 9 eleq2d φ k 0 N k 0 N
11 10 biimpar φ k 0 N k 0 N
12 cnex V
13 12 a1i φ V
14 elpm2r V S F : A A S F 𝑝𝑚 S
15 13 1 2 3 14 syl22anc φ F 𝑝𝑚 S
16 1 15 jca φ S F 𝑝𝑚 S
17 dvn2bss S F 𝑝𝑚 S k 0 N dom S D n F N dom S D n F k
18 17 3expa S F 𝑝𝑚 S k 0 N dom S D n F N dom S D n F k
19 16 18 sylan φ k 0 N dom S D n F N dom S D n F k
20 5 adantr φ k 0 N B dom S D n F N
21 19 20 sseldd φ k 0 N B dom S D n F k
22 11 21 syldan φ k 0 N B dom S D n F k