Metamath Proof Explorer


Theorem taylplem2

Description: Lemma for taylpfval and similar theorems. (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses taylpfval.s φ S
taylpfval.f φ F : A
taylpfval.a φ A S
taylpfval.n φ N 0
taylpfval.b φ B dom S D n F N
Assertion taylplem2 φ X k 0 N S D n F k B k ! X B k

Proof

Step Hyp Ref Expression
1 taylpfval.s φ S
2 taylpfval.f φ F : A
3 taylpfval.a φ A S
4 taylpfval.n φ N 0
5 taylpfval.b φ B dom S D n F N
6 0z 0
7 4 nn0zd φ N
8 fzval2 0 N 0 N = 0 N
9 6 7 8 sylancr φ 0 N = 0 N
10 9 eleq2d φ k 0 N k 0 N
11 10 adantr φ X k 0 N k 0 N
12 11 biimpa φ X k 0 N k 0 N
13 4 orcd φ N 0 N = +∞
14 1 2 3 4 5 taylplem1 φ k 0 N B dom S D n F k
15 1 2 3 13 14 taylfvallem1 φ X k 0 N S D n F k B k ! X B k
16 12 15 syldan φ X k 0 N S D n F k B k ! X B k