Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Taylor polynomials and Taylor's theorem
taylplem2
Next ⟩
taylpfval
Metamath Proof Explorer
Ascii
Unicode
Theorem
taylplem2
Description:
Lemma for
taylpfval
and similar theorems.
(Contributed by
Mario Carneiro
, 31-Dec-2016)
Ref
Expression
Hypotheses
taylpfval.s
⊢
φ
→
S
∈
ℝ
ℂ
taylpfval.f
⊢
φ
→
F
:
A
⟶
ℂ
taylpfval.a
⊢
φ
→
A
⊆
S
taylpfval.n
⊢
φ
→
N
∈
ℕ
0
taylpfval.b
⊢
φ
→
B
∈
dom
⁡
S
D
n
F
⁡
N
Assertion
taylplem2
⊢
φ
∧
X
∈
ℂ
∧
k
∈
0
…
N
→
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
taylpfval.s
⊢
φ
→
S
∈
ℝ
ℂ
2
taylpfval.f
⊢
φ
→
F
:
A
⟶
ℂ
3
taylpfval.a
⊢
φ
→
A
⊆
S
4
taylpfval.n
⊢
φ
→
N
∈
ℕ
0
5
taylpfval.b
⊢
φ
→
B
∈
dom
⁡
S
D
n
F
⁡
N
6
0z
⊢
0
∈
ℤ
7
4
nn0zd
⊢
φ
→
N
∈
ℤ
8
fzval2
⊢
0
∈
ℤ
∧
N
∈
ℤ
→
0
…
N
=
0
N
∩
ℤ
9
6
7
8
sylancr
⊢
φ
→
0
…
N
=
0
N
∩
ℤ
10
9
eleq2d
⊢
φ
→
k
∈
0
…
N
↔
k
∈
0
N
∩
ℤ
11
10
adantr
⊢
φ
∧
X
∈
ℂ
→
k
∈
0
…
N
↔
k
∈
0
N
∩
ℤ
12
11
biimpa
⊢
φ
∧
X
∈
ℂ
∧
k
∈
0
…
N
→
k
∈
0
N
∩
ℤ
13
4
orcd
⊢
φ
→
N
∈
ℕ
0
∨
N
=
+∞
14
1
2
3
4
5
taylplem1
⊢
φ
∧
k
∈
0
N
∩
ℤ
→
B
∈
dom
⁡
S
D
n
F
⁡
k
15
1
2
3
13
14
taylfvallem1
⊢
φ
∧
X
∈
ℂ
∧
k
∈
0
N
∩
ℤ
→
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
∈
ℂ
16
12
15
syldan
⊢
φ
∧
X
∈
ℂ
∧
k
∈
0
…
N
→
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
∈
ℂ