Metamath Proof Explorer


Theorem taylply

Description: The Taylor polynomial is a polynomial of degree (at most) N . (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Hypotheses taylpfval.s φ S
taylpfval.f φ F : A
taylpfval.a φ A S
taylpfval.n φ N 0
taylpfval.b φ B dom S D n F N
taylpfval.t T = N S Tayl F B
Assertion taylply φ T Poly deg T N

Proof

Step Hyp Ref Expression
1 taylpfval.s φ S
2 taylpfval.f φ F : A
3 taylpfval.a φ A S
4 taylpfval.n φ N 0
5 taylpfval.b φ B dom S D n F N
6 taylpfval.t T = N S Tayl F B
7 cnring fld Ring
8 cnfldbas = Base fld
9 8 subrgid fld Ring SubRing fld
10 7 9 mp1i φ SubRing fld
11 cnex V
12 11 a1i φ V
13 elpm2r V S F : A A S F 𝑝𝑚 S
14 12 1 2 3 13 syl22anc φ F 𝑝𝑚 S
15 dvnbss S F 𝑝𝑚 S N 0 dom S D n F N dom F
16 1 14 4 15 syl3anc φ dom S D n F N dom F
17 2 16 fssdmd φ dom S D n F N A
18 recnprss S S
19 1 18 syl φ S
20 3 19 sstrd φ A
21 17 20 sstrd φ dom S D n F N
22 21 5 sseldd φ B
23 1 adantr φ k 0 N S
24 14 adantr φ k 0 N F 𝑝𝑚 S
25 elfznn0 k 0 N k 0
26 25 adantl φ k 0 N k 0
27 dvnf S F 𝑝𝑚 S k 0 S D n F k : dom S D n F k
28 23 24 26 27 syl3anc φ k 0 N S D n F k : dom S D n F k
29 simpr φ k 0 N k 0 N
30 dvn2bss S F 𝑝𝑚 S k 0 N dom S D n F N dom S D n F k
31 23 24 29 30 syl3anc φ k 0 N dom S D n F N dom S D n F k
32 5 adantr φ k 0 N B dom S D n F N
33 31 32 sseldd φ k 0 N B dom S D n F k
34 28 33 ffvelrnd φ k 0 N S D n F k B
35 26 faccld φ k 0 N k !
36 35 nncnd φ k 0 N k !
37 35 nnne0d φ k 0 N k ! 0
38 34 36 37 divcld φ k 0 N S D n F k B k !
39 1 2 3 4 5 6 10 22 38 taylply2 φ T Poly deg T N