Metamath Proof Explorer


Theorem taylply2

Description: The Taylor polynomial is a polynomial of degree (at most) N . This version of taylply shows that the coefficients of T are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017) Avoid ax-mulf . (Revised by GG, 30-Apr-2025)

Ref Expression
Hypotheses taylpfval.s φ S
taylpfval.f φ F : A
taylpfval.a φ A S
taylpfval.n φ N 0
taylpfval.b φ B dom S D n F N
taylpfval.t T = N S Tayl F B
taylply2.1 φ D SubRing fld
taylply2.2 φ B D
taylply2.3 φ k 0 N S D n F k B k ! D
Assertion taylply2 φ T Poly D deg T N

Proof

Step Hyp Ref Expression
1 taylpfval.s φ S
2 taylpfval.f φ F : A
3 taylpfval.a φ A S
4 taylpfval.n φ N 0
5 taylpfval.b φ B dom S D n F N
6 taylpfval.t T = N S Tayl F B
7 taylply2.1 φ D SubRing fld
8 taylply2.2 φ B D
9 taylply2.3 φ k 0 N S D n F k B k ! D
10 1 2 3 4 5 6 taylpfval φ T = x k = 0 N S D n F k B k ! x B k
11 simpr φ x x
12 cnex V
13 12 a1i φ V
14 elpm2r V S F : A A S F 𝑝𝑚 S
15 13 1 2 3 14 syl22anc φ F 𝑝𝑚 S
16 dvnbss S F 𝑝𝑚 S N 0 dom S D n F N dom F
17 1 15 4 16 syl3anc φ dom S D n F N dom F
18 2 17 fssdmd φ dom S D n F N A
19 recnprss S S
20 1 19 syl φ S
21 3 20 sstrd φ A
22 18 21 sstrd φ dom S D n F N
23 22 5 sseldd φ B
24 23 adantr φ x B
25 11 24 subcld φ x x B
26 df-idp X p = I
27 mptresid I = x x
28 26 27 eqtri X p = x x
29 28 a1i φ X p = x x
30 fconstmpt × B = x B
31 30 a1i φ × B = x B
32 13 11 24 29 31 offval2 φ X p f × B = x x B
33 eqidd φ y k = 0 N S D n F k B k ! y k = y k = 0 N S D n F k B k ! y k
34 oveq1 y = x B y k = x B k
35 34 oveq2d y = x B S D n F k B k ! y k = S D n F k B k ! x B k
36 35 sumeq2sdv y = x B k = 0 N S D n F k B k ! y k = k = 0 N S D n F k B k ! x B k
37 25 32 33 36 fmptco φ y k = 0 N S D n F k B k ! y k X p f × B = x k = 0 N S D n F k B k ! x B k
38 10 37 eqtr4d φ T = y k = 0 N S D n F k B k ! y k X p f × B
39 cnfldbas = Base fld
40 39 subrgss D SubRing fld D
41 7 40 syl φ D
42 41 4 9 elplyd φ y k = 0 N S D n F k B k ! y k Poly D
43 cnfld1 1 = 1 fld
44 43 subrg1cl D SubRing fld 1 D
45 7 44 syl φ 1 D
46 plyid D 1 D X p Poly D
47 41 45 46 syl2anc φ X p Poly D
48 plyconst D B D × B Poly D
49 41 8 48 syl2anc φ × B Poly D
50 subrgsubg D SubRing fld D SubGrp fld
51 7 50 syl φ D SubGrp fld
52 cnfldadd + = + fld
53 52 subgcl D SubGrp fld u D v D u + v D
54 53 3expb D SubGrp fld u D v D u + v D
55 51 54 sylan φ u D v D u + v D
56 40 sseld D SubRing fld u D u
57 56 a1dd D SubRing fld u D v D u
58 57 3imp D SubRing fld u D v D u
59 40 sseld D SubRing fld v D v
60 59 a1d D SubRing fld u D v D v
61 60 3imp D SubRing fld u D v D v
62 ovmpot u v u x , y x y v = u v
63 58 61 62 syl2anc D SubRing fld u D v D u x , y x y v = u v
64 mpocnfldmul x , y x y = fld
65 64 subrgmcl D SubRing fld u D v D u x , y x y v D
66 63 65 eqeltrrd D SubRing fld u D v D u v D
67 66 3expb D SubRing fld u D v D u v D
68 7 67 sylan φ u D v D u v D
69 ax-1cn 1
70 cnfldneg 1 inv g fld 1 = 1
71 69 70 ax-mp inv g fld 1 = 1
72 eqid inv g fld = inv g fld
73 72 subginvcl D SubGrp fld 1 D inv g fld 1 D
74 51 45 73 syl2anc φ inv g fld 1 D
75 71 74 eqeltrrid φ 1 D
76 47 49 55 68 75 plysub φ X p f × B Poly D
77 42 76 55 68 plyco φ y k = 0 N S D n F k B k ! y k X p f × B Poly D
78 38 77 eqeltrd φ T Poly D
79 38 fveq2d φ deg T = deg y k = 0 N S D n F k B k ! y k X p f × B
80 eqid deg y k = 0 N S D n F k B k ! y k = deg y k = 0 N S D n F k B k ! y k
81 eqid deg X p f × B = deg X p f × B
82 80 81 42 76 dgrco φ deg y k = 0 N S D n F k B k ! y k X p f × B = deg y k = 0 N S D n F k B k ! y k deg X p f × B
83 eqid X p f × B = X p f × B
84 83 plyremlem B X p f × B Poly deg X p f × B = 1 X p f × B -1 0 = B
85 23 84 syl φ X p f × B Poly deg X p f × B = 1 X p f × B -1 0 = B
86 85 simp2d φ deg X p f × B = 1
87 86 oveq2d φ deg y k = 0 N S D n F k B k ! y k deg X p f × B = deg y k = 0 N S D n F k B k ! y k 1
88 dgrcl y k = 0 N S D n F k B k ! y k Poly D deg y k = 0 N S D n F k B k ! y k 0
89 42 88 syl φ deg y k = 0 N S D n F k B k ! y k 0
90 89 nn0cnd φ deg y k = 0 N S D n F k B k ! y k
91 90 mulridd φ deg y k = 0 N S D n F k B k ! y k 1 = deg y k = 0 N S D n F k B k ! y k
92 87 91 eqtrd φ deg y k = 0 N S D n F k B k ! y k deg X p f × B = deg y k = 0 N S D n F k B k ! y k
93 79 82 92 3eqtrd φ deg T = deg y k = 0 N S D n F k B k ! y k
94 elfznn0 k 0 N k 0
95 dvnf S F 𝑝𝑚 S k 0 S D n F k : dom S D n F k
96 1 15 94 95 syl2an3an φ k 0 N S D n F k : dom S D n F k
97 id k 0 N k 0 N
98 dvn2bss S F 𝑝𝑚 S k 0 N dom S D n F N dom S D n F k
99 1 15 97 98 syl2an3an φ k 0 N dom S D n F N dom S D n F k
100 5 adantr φ k 0 N B dom S D n F N
101 99 100 sseldd φ k 0 N B dom S D n F k
102 96 101 ffvelcdmd φ k 0 N S D n F k B
103 94 adantl φ k 0 N k 0
104 103 faccld φ k 0 N k !
105 104 nncnd φ k 0 N k !
106 104 nnne0d φ k 0 N k ! 0
107 102 105 106 divcld φ k 0 N S D n F k B k !
108 42 4 107 33 dgrle φ deg y k = 0 N S D n F k B k ! y k N
109 93 108 eqbrtrd φ deg T N
110 78 109 jca φ T Poly D deg T N