Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Taylor polynomials and Taylor's theorem
taylpval
Next ⟩
taylply2
Metamath Proof Explorer
Ascii
Unicode
Theorem
taylpval
Description:
Value of the Taylor polynomial.
(Contributed by
Mario Carneiro
, 31-Dec-2016)
Ref
Expression
Hypotheses
taylpfval.s
⊢
φ
→
S
∈
ℝ
ℂ
taylpfval.f
⊢
φ
→
F
:
A
⟶
ℂ
taylpfval.a
⊢
φ
→
A
⊆
S
taylpfval.n
⊢
φ
→
N
∈
ℕ
0
taylpfval.b
⊢
φ
→
B
∈
dom
⁡
S
D
n
F
⁡
N
taylpfval.t
⊢
T
=
N
S
Tayl
F
B
taylpval.x
⊢
φ
→
X
∈
ℂ
Assertion
taylpval
⊢
φ
→
T
⁡
X
=
∑
k
=
0
N
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
Proof
Step
Hyp
Ref
Expression
1
taylpfval.s
⊢
φ
→
S
∈
ℝ
ℂ
2
taylpfval.f
⊢
φ
→
F
:
A
⟶
ℂ
3
taylpfval.a
⊢
φ
→
A
⊆
S
4
taylpfval.n
⊢
φ
→
N
∈
ℕ
0
5
taylpfval.b
⊢
φ
→
B
∈
dom
⁡
S
D
n
F
⁡
N
6
taylpfval.t
⊢
T
=
N
S
Tayl
F
B
7
taylpval.x
⊢
φ
→
X
∈
ℂ
8
1
2
3
4
5
6
taylpfval
⊢
φ
→
T
=
x
∈
ℂ
⟼
∑
k
=
0
N
S
D
n
F
⁡
k
⁡
B
k
!
⁢
x
−
B
k
9
simplr
⊢
φ
∧
x
=
X
∧
k
∈
0
…
N
→
x
=
X
10
9
oveq1d
⊢
φ
∧
x
=
X
∧
k
∈
0
…
N
→
x
−
B
=
X
−
B
11
10
oveq1d
⊢
φ
∧
x
=
X
∧
k
∈
0
…
N
→
x
−
B
k
=
X
−
B
k
12
11
oveq2d
⊢
φ
∧
x
=
X
∧
k
∈
0
…
N
→
S
D
n
F
⁡
k
⁡
B
k
!
⁢
x
−
B
k
=
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
13
12
sumeq2dv
⊢
φ
∧
x
=
X
→
∑
k
=
0
N
S
D
n
F
⁡
k
⁡
B
k
!
⁢
x
−
B
k
=
∑
k
=
0
N
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
14
sumex
⊢
∑
k
=
0
N
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
∈
V
15
14
a1i
⊢
φ
→
∑
k
=
0
N
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k
∈
V
16
8
13
7
15
fvmptd
⊢
φ
→
T
⁡
X
=
∑
k
=
0
N
S
D
n
F
⁡
k
⁡
B
k
!
⁢
X
−
B
k