Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Transitive closure
tc0
Next ⟩
tc00
Metamath Proof Explorer
Ascii
Unicode
Theorem
tc0
Description:
The transitive closure of the empty set.
(Contributed by
Mario Carneiro
, 4-Jun-2015)
Ref
Expression
Assertion
tc0
⊢
TC
⁡
∅
=
∅
Proof
Step
Hyp
Ref
Expression
1
ssid
⊢
∅
⊆
∅
2
tr0
⊢
Tr
⁡
∅
3
0ex
⊢
∅
∈
V
4
tcmin
⊢
∅
∈
V
→
∅
⊆
∅
∧
Tr
⁡
∅
→
TC
⁡
∅
⊆
∅
5
3
4
ax-mp
⊢
∅
⊆
∅
∧
Tr
⁡
∅
→
TC
⁡
∅
⊆
∅
6
1
2
5
mp2an
⊢
TC
⁡
∅
⊆
∅
7
0ss
⊢
∅
⊆
TC
⁡
∅
8
6
7
eqssi
⊢
TC
⁡
∅
=
∅