Metamath Proof Explorer


Theorem tc0

Description: The transitive closure of the empty set. (Contributed by Mario Carneiro, 4-Jun-2015)

Ref Expression
Assertion tc0 TC =

Proof

Step Hyp Ref Expression
1 ssid
2 tr0 Tr
3 0ex V
4 tcmin V Tr TC
5 3 4 ax-mp Tr TC
6 1 2 5 mp2an TC
7 0ss TC
8 6 7 eqssi TC =