Metamath Proof Explorer


Theorem tc2

Description: A variant of the definition of the transitive closure function, using instead the smallest transitive set containing A as a member, gives almost the same set, except that A itself must be added because it is not usually a member of ( TCA ) (and it is never a member if A is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Hypothesis tc2.1 A V
Assertion tc2 TC A A = x | A x Tr x

Proof

Step Hyp Ref Expression
1 tc2.1 A V
2 tcvalg A V TC A = x | A x Tr x
3 1 2 ax-mp TC A = x | A x Tr x
4 trss Tr x A x A x
5 4 imdistanri A x Tr x A x Tr x
6 5 ss2abi x | A x Tr x x | A x Tr x
7 intss x | A x Tr x x | A x Tr x x | A x Tr x x | A x Tr x
8 6 7 ax-mp x | A x Tr x x | A x Tr x
9 3 8 eqsstri TC A x | A x Tr x
10 1 elintab A x | A x Tr x x A x Tr x A x
11 simpl A x Tr x A x
12 10 11 mpgbir A x | A x Tr x
13 1 snss A x | A x Tr x A x | A x Tr x
14 12 13 mpbi A x | A x Tr x
15 9 14 unssi TC A A x | A x Tr x
16 1 snid A A
17 elun2 A A A TC A A
18 16 17 ax-mp A TC A A
19 uniun TC A A = TC A A
20 tctr Tr TC A
21 df-tr Tr TC A TC A TC A
22 20 21 mpbi TC A TC A
23 1 unisn A = A
24 tcid A V A TC A
25 1 24 ax-mp A TC A
26 23 25 eqsstri A TC A
27 22 26 unssi TC A A TC A
28 19 27 eqsstri TC A A TC A
29 ssun1 TC A TC A A
30 28 29 sstri TC A A TC A A
31 df-tr Tr TC A A TC A A TC A A
32 30 31 mpbir Tr TC A A
33 fvex TC A V
34 snex A V
35 33 34 unex TC A A V
36 eleq2 x = TC A A A x A TC A A
37 treq x = TC A A Tr x Tr TC A A
38 36 37 anbi12d x = TC A A A x Tr x A TC A A Tr TC A A
39 35 38 elab TC A A x | A x Tr x A TC A A Tr TC A A
40 18 32 39 mpbir2an TC A A x | A x Tr x
41 intss1 TC A A x | A x Tr x x | A x Tr x TC A A
42 40 41 ax-mp x | A x Tr x TC A A
43 15 42 eqssi TC A A = x | A x Tr x