Metamath Proof Explorer


Theorem tcel

Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Hypothesis tc2.1 A V
Assertion tcel B A TC B TC A

Proof

Step Hyp Ref Expression
1 tc2.1 A V
2 tcvalg B A TC B = x | B x Tr x
3 ssel A x B A B x
4 trss Tr x B x B x
5 4 com12 B x Tr x B x
6 3 5 syl6com B A A x Tr x B x
7 6 impd B A A x Tr x B x
8 simpr A x Tr x Tr x
9 7 8 jca2 B A A x Tr x B x Tr x
10 9 ss2abdv B A x | A x Tr x x | B x Tr x
11 intss x | A x Tr x x | B x Tr x x | B x Tr x x | A x Tr x
12 10 11 syl B A x | B x Tr x x | A x Tr x
13 tcvalg A V TC A = x | A x Tr x
14 1 13 ax-mp TC A = x | A x Tr x
15 12 14 sseqtrrdi B A x | B x Tr x TC A
16 2 15 eqsstrd B A TC B TC A