Metamath Proof Explorer


Theorem tchnmfval

Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n G = toCPreHil W
tcphnmval.n N = norm G
tcphnmval.v V = Base W
tcphnmval.h , ˙ = 𝑖 W
Assertion tchnmfval W Grp N = x V x , ˙ x

Proof

Step Hyp Ref Expression
1 tcphval.n G = toCPreHil W
2 tcphnmval.n N = norm G
3 tcphnmval.v V = Base W
4 tcphnmval.h , ˙ = 𝑖 W
5 eqid x V x , ˙ x = x V x , ˙ x
6 fvrn0 x , ˙ x ran
7 6 a1i x V x , ˙ x ran
8 5 7 fmpti x V x , ˙ x : V ran
9 1 3 4 tcphval G = W toNrmGrp x V x , ˙ x
10 cnex V
11 sqrtf :
12 frn : ran
13 11 12 ax-mp ran
14 10 13 ssexi ran V
15 p0ex V
16 14 15 unex ran V
17 9 3 16 tngnm W Grp x V x , ˙ x : V ran x V x , ˙ x = norm G
18 8 17 mpan2 W Grp x V x , ˙ x = norm G
19 2 18 eqtr4id W Grp N = x V x , ˙ x