Metamath Proof Explorer


Theorem tchplusg

Description: The addition operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n G = toCPreHil W
tchplusg.v + ˙ = + W
Assertion tchplusg + ˙ = + G

Proof

Step Hyp Ref Expression
1 tcphval.n G = toCPreHil W
2 tchplusg.v + ˙ = + W
3 eqid Base W = Base W
4 3 tcphex x Base W x 𝑖 W x V
5 eqid 𝑖 W = 𝑖 W
6 1 3 5 tcphval G = W toNrmGrp x Base W x 𝑖 W x
7 6 2 tngplusg x Base W x 𝑖 W x V + ˙ = + G
8 4 7 ax-mp + ˙ = + G