Metamath Proof Explorer


Theorem tcidm

Description: The transitive closure function is idempotent. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tcidm TC TC A = TC A

Proof

Step Hyp Ref Expression
1 ssid TC A TC A
2 tctr Tr TC A
3 fvex TC A V
4 tcmin TC A V TC A TC A Tr TC A TC TC A TC A
5 3 4 ax-mp TC A TC A Tr TC A TC TC A TC A
6 1 2 5 mp2an TC TC A TC A
7 tcid TC A V TC A TC TC A
8 3 7 ax-mp TC A TC TC A
9 6 8 eqssi TC TC A = TC A