Metamath Proof Explorer


Theorem tcmin

Description: Defining property of the transitive closure function: it is a subset of any transitive class containing A . (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tcmin A V A B Tr B TC A B

Proof

Step Hyp Ref Expression
1 tcvalg A V TC A = x | A x Tr x
2 fvex TC A V
3 1 2 eqeltrrdi A V x | A x Tr x V
4 intexab x A x Tr x x | A x Tr x V
5 3 4 sylibr A V x A x Tr x
6 ssin A x A B A x B
7 6 biimpi A x A B A x B
8 trin Tr x Tr B Tr x B
9 7 8 anim12i A x A B Tr x Tr B A x B Tr x B
10 9 an4s A x Tr x A B Tr B A x B Tr x B
11 10 expcom A B Tr B A x Tr x A x B Tr x B
12 vex x V
13 12 inex1 x B V
14 sseq2 y = x B A y A x B
15 treq y = x B Tr y Tr x B
16 14 15 anbi12d y = x B A y Tr y A x B Tr x B
17 13 16 elab x B y | A y Tr y A x B Tr x B
18 intss1 x B y | A y Tr y y | A y Tr y x B
19 17 18 sylbir A x B Tr x B y | A y Tr y x B
20 inss2 x B B
21 19 20 sstrdi A x B Tr x B y | A y Tr y B
22 11 21 syl6 A B Tr B A x Tr x y | A y Tr y B
23 22 exlimdv A B Tr B x A x Tr x y | A y Tr y B
24 5 23 syl5com A V A B Tr B y | A y Tr y B
25 tcvalg A V TC A = y | A y Tr y
26 25 sseq1d A V TC A B y | A y Tr y B
27 24 26 sylibrd A V A B Tr B TC A B