Metamath Proof Explorer


Theorem tcphbas

Description: The base set of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n G = toCPreHil W
tcphbas.v V = Base W
Assertion tcphbas V = Base G

Proof

Step Hyp Ref Expression
1 tcphval.n G = toCPreHil W
2 tcphbas.v V = Base W
3 2 tcphex x V x 𝑖 W x V
4 eqid 𝑖 W = 𝑖 W
5 1 2 4 tcphval G = W toNrmGrp x V x 𝑖 W x
6 5 2 tngbas x V x 𝑖 W x V V = Base G
7 3 6 ax-mp V = Base G