Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
|
2 |
|
tcphcph.v |
|
3 |
|
tcphcph.f |
|
4 |
|
tcphcph.1 |
|
5 |
|
tcphcph.2 |
|
6 |
|
tcphcph.h |
|
7 |
|
tcphcph.3 |
|
8 |
|
tcphcph.4 |
|
9 |
|
tcphcph.k |
|
10 |
|
tcphcph.s |
|
11 |
|
tcphcphlem2.3 |
|
12 |
|
tcphcphlem2.4 |
|
13 |
1 2 3 4 5
|
phclm |
|
14 |
3 9
|
clmsscn |
|
15 |
13 14
|
syl |
|
16 |
15 11
|
sseldd |
|
17 |
16
|
cjmulrcld |
|
18 |
16
|
cjmulge0d |
|
19 |
1 2 3 4 5 6
|
tcphcphlem3 |
|
20 |
12 19
|
mpdan |
|
21 |
|
oveq12 |
|
22 |
21
|
anidms |
|
23 |
22
|
breq2d |
|
24 |
8
|
ralrimiva |
|
25 |
23 24 12
|
rspcdva |
|
26 |
17 18 20 25
|
sqrtmuld |
|
27 |
|
phllmod |
|
28 |
4 27
|
syl |
|
29 |
2 3 10 9
|
lmodvscl |
|
30 |
28 11 12 29
|
syl3anc |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
3 6 2 9 10 31 32
|
ipassr |
|
34 |
4 30 12 11 33
|
syl13anc |
|
35 |
3
|
clmmul |
|
36 |
13 35
|
syl |
|
37 |
36
|
oveqd |
|
38 |
3 6 2 9 10 31
|
ipass |
|
39 |
4 11 12 12 38
|
syl13anc |
|
40 |
37 39
|
eqtr4d |
|
41 |
3
|
clmcj |
|
42 |
13 41
|
syl |
|
43 |
42
|
fveq1d |
|
44 |
36 40 43
|
oveq123d |
|
45 |
20
|
recnd |
|
46 |
16
|
cjcld |
|
47 |
16 45 46
|
mul32d |
|
48 |
34 44 47
|
3eqtr2d |
|
49 |
48
|
fveq2d |
|
50 |
|
absval |
|
51 |
16 50
|
syl |
|
52 |
51
|
oveq1d |
|
53 |
26 49 52
|
3eqtr4d |
|