Metamath Proof Explorer


Theorem tcphcphlem3

Description: Lemma for tcphcph : real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015)

Ref Expression
Hypotheses tcphval.n G = toCPreHil W
tcphcph.v V = Base W
tcphcph.f F = Scalar W
tcphcph.1 φ W PreHil
tcphcph.2 φ F = fld 𝑠 K
tcphcph.h , ˙ = 𝑖 W
Assertion tcphcphlem3 φ X V X , ˙ X

Proof

Step Hyp Ref Expression
1 tcphval.n G = toCPreHil W
2 tcphcph.v V = Base W
3 tcphcph.f F = Scalar W
4 tcphcph.1 φ W PreHil
5 tcphcph.2 φ F = fld 𝑠 K
6 tcphcph.h , ˙ = 𝑖 W
7 1 2 3 4 5 phclm φ W CMod
8 7 adantr φ X V W CMod
9 eqid Base F = Base F
10 3 9 clmsscn W CMod Base F
11 8 10 syl φ X V Base F
12 3 6 2 9 ipcl W PreHil X V X V X , ˙ X Base F
13 12 3anidm23 W PreHil X V X , ˙ X Base F
14 4 13 sylan φ X V X , ˙ X Base F
15 11 14 sseldd φ X V X , ˙ X
16 3 clmcj W CMod * = * F
17 8 16 syl φ X V * = * F
18 17 fveq1d φ X V X , ˙ X = X , ˙ X * F
19 4 adantr φ X V W PreHil
20 simpr φ X V X V
21 eqid * F = * F
22 3 6 2 21 ipcj W PreHil X V X V X , ˙ X * F = X , ˙ X
23 19 20 20 22 syl3anc φ X V X , ˙ X * F = X , ˙ X
24 18 23 eqtrd φ X V X , ˙ X = X , ˙ X
25 15 24 cjrebd φ X V X , ˙ X