Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Subcomplex pre-Hilbert spaces
tcphex
Next ⟩
tcphval
Metamath Proof Explorer
Ascii
Unicode
Theorem
tcphex
Description:
Lemma for
tcphbas
and similar theorems.
(Contributed by
Mario Carneiro
, 7-Oct-2015)
Ref
Expression
Hypothesis
tcphex.v
⊢
V
=
Base
W
Assertion
tcphex
⊢
x
∈
V
⟼
x
,
˙
x
∈
V
Proof
Step
Hyp
Ref
Expression
1
tcphex.v
⊢
V
=
Base
W
2
eqid
⊢
x
∈
V
⟼
x
,
˙
x
=
x
∈
V
⟼
x
,
˙
x
3
fvrn0
⊢
x
,
˙
x
∈
ran
⁡
√
∪
∅
4
3
a1i
⊢
x
∈
V
→
x
,
˙
x
∈
ran
⁡
√
∪
∅
5
2
4
fmpti
⊢
x
∈
V
⟼
x
,
˙
x
:
V
⟶
ran
⁡
√
∪
∅
6
1
fvexi
⊢
V
∈
V
7
cnex
⊢
ℂ
∈
V
8
sqrtf
⊢
√
:
ℂ
⟶
ℂ
9
frn
⊢
√
:
ℂ
⟶
ℂ
→
ran
⁡
√
⊆
ℂ
10
8
9
ax-mp
⊢
ran
⁡
√
⊆
ℂ
11
7
10
ssexi
⊢
ran
⁡
√
∈
V
12
p0ex
⊢
∅
∈
V
13
11
12
unex
⊢
ran
⁡
√
∪
∅
∈
V
14
fex2
⊢
x
∈
V
⟼
x
,
˙
x
:
V
⟶
ran
⁡
√
∪
∅
∧
V
∈
V
∧
ran
⁡
√
∪
∅
∈
V
→
x
∈
V
⟼
x
,
˙
x
∈
V
15
5
6
13
14
mp3an
⊢
x
∈
V
⟼
x
,
˙
x
∈
V