Metamath Proof Explorer


Theorem tcphex

Description: Lemma for tcphbas and similar theorems. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypothesis tcphex.v V = Base W
Assertion tcphex x V x , ˙ x V

Proof

Step Hyp Ref Expression
1 tcphex.v V = Base W
2 eqid x V x , ˙ x = x V x , ˙ x
3 fvrn0 x , ˙ x ran
4 3 a1i x V x , ˙ x ran
5 2 4 fmpti x V x , ˙ x : V ran
6 1 fvexi V V
7 cnex V
8 sqrtf :
9 frn : ran
10 8 9 ax-mp ran
11 7 10 ssexi ran V
12 p0ex V
13 11 12 unex ran V
14 fex2 x V x , ˙ x : V ran V V ran V x V x , ˙ x V
15 5 6 13 14 mp3an x V x , ˙ x V