Metamath Proof Explorer


Theorem tcphip

Description: The inner product of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n G = toCPreHil W
tcphip.s · ˙ = 𝑖 W
Assertion tcphip · ˙ = 𝑖 G

Proof

Step Hyp Ref Expression
1 tcphval.n G = toCPreHil W
2 tcphip.s · ˙ = 𝑖 W
3 eqid Base W = Base W
4 3 tcphex x Base W x · ˙ x V
5 1 3 2 tcphval G = W toNrmGrp x Base W x · ˙ x
6 5 2 tngip x Base W x · ˙ x V · ˙ = 𝑖 G
7 4 6 ax-mp · ˙ = 𝑖 G