Metamath Proof Explorer


Theorem tcphnmval

Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses tcphval.n G = toCPreHil W
tcphnmval.n N = norm G
tcphnmval.v V = Base W
tcphnmval.h , ˙ = 𝑖 W
Assertion tcphnmval W Grp X V N X = X , ˙ X

Proof

Step Hyp Ref Expression
1 tcphval.n G = toCPreHil W
2 tcphnmval.n N = norm G
3 tcphnmval.v V = Base W
4 tcphnmval.h , ˙ = 𝑖 W
5 1 2 3 4 tchnmfval W Grp N = x V x , ˙ x
6 5 fveq1d W Grp N X = x V x , ˙ x X
7 oveq12 x = X x = X x , ˙ x = X , ˙ X
8 7 anidms x = X x , ˙ x = X , ˙ X
9 8 fveq2d x = X x , ˙ x = X , ˙ X
10 eqid x V x , ˙ x = x V x , ˙ x
11 fvex X , ˙ X V
12 9 10 11 fvmpt X V x V x , ˙ x X = X , ˙ X
13 6 12 sylan9eq W Grp X V N X = X , ˙ X