Metamath Proof Explorer


Theorem tcphphl

Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypothesis tcphval.n G = toCPreHil W
Assertion tcphphl W PreHil G PreHil

Proof

Step Hyp Ref Expression
1 tcphval.n G = toCPreHil W
2 eqidd Base W = Base W
3 eqid Base W = Base W
4 1 3 tcphbas Base W = Base G
5 4 a1i Base W = Base G
6 eqid + W = + W
7 1 6 tchplusg + W = + G
8 7 a1i + W = + G
9 8 oveqdr x Base W y Base W x + W y = x + G y
10 eqidd Scalar W = Scalar W
11 eqid Scalar W = Scalar W
12 1 11 tcphsca Scalar W = Scalar G
13 12 a1i Scalar W = Scalar G
14 eqid Base Scalar W = Base Scalar W
15 eqid W = W
16 1 15 tcphvsca W = G
17 16 a1i W = G
18 17 oveqdr x Base Scalar W y Base W x W y = x G y
19 eqid 𝑖 W = 𝑖 W
20 1 19 tcphip 𝑖 W = 𝑖 G
21 20 a1i 𝑖 W = 𝑖 G
22 21 oveqdr x Base W y Base W x 𝑖 W y = x 𝑖 G y
23 2 5 9 10 13 14 18 22 phlpropd W PreHil G PreHil
24 23 mptru W PreHil G PreHil