Metamath Proof Explorer


Theorem tcphsub

Description: The subtraction operation of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses tcphval.n G = toCPreHil W
tcphsub.v - ˙ = - W
Assertion tcphsub - ˙ = - G

Proof

Step Hyp Ref Expression
1 tcphval.n G = toCPreHil W
2 tcphsub.v - ˙ = - W
3 eqid Base W = Base W
4 1 3 tcphbas Base W = Base G
5 4 a1i Base W = Base G
6 eqid + W = + W
7 1 6 tchplusg + W = + G
8 7 a1i + W = + G
9 5 8 grpsubpropd - W = - G
10 9 mptru - W = - G
11 2 10 eqtri - ˙ = - G