Metamath Proof Explorer


Theorem tcrank

Description: This theorem expresses two different facts from the two subset implications in this equality. In the forward direction, it says that the transitive closure has members of every rank below A . Stated another way, to construct a set at a given rank, you have to climb the entire hierarchy of ordinals below ( rankA ) , constructing at least one set at each level in order to move up the ranks. In the reverse direction, it says that every member of ( TCA ) has a rank below the rank of A , since intuitively it contains only the members of A and the members of those and so on, but nothing "bigger" than A . (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tcrank A R1 On rank A = rank TC A

Proof

Step Hyp Ref Expression
1 rankwflemb A R1 On y On A R1 suc y
2 suceloni y On suc y On
3 fveq2 x = y R1 x = R1 y
4 3 raleqdv x = y z R1 x rank z rank TC z z R1 y rank z rank TC z
5 fveq2 z = u rank z = rank u
6 fveq2 z = u TC z = TC u
7 6 imaeq2d z = u rank TC z = rank TC u
8 5 7 sseq12d z = u rank z rank TC z rank u rank TC u
9 8 cbvralvw z R1 y rank z rank TC z u R1 y rank u rank TC u
10 4 9 bitrdi x = y z R1 x rank z rank TC z u R1 y rank u rank TC u
11 fveq2 x = suc y R1 x = R1 suc y
12 11 raleqdv x = suc y z R1 x rank z rank TC z z R1 suc y rank z rank TC z
13 simpr x On y x u R1 y rank u rank TC u z R1 x w rank z z R1 x w rank z
14 simprl x On y x u R1 y rank u rank TC u z R1 x w rank z z R1 x
15 simplr x On y x u R1 y rank u rank TC u z R1 x w rank z y x u R1 y rank u rank TC u
16 rankr1ai z R1 x rank z x
17 fveq2 y = rank z R1 y = R1 rank z
18 17 raleqdv y = rank z u R1 y rank u rank TC u u R1 rank z rank u rank TC u
19 18 rspcv rank z x y x u R1 y rank u rank TC u u R1 rank z rank u rank TC u
20 16 19 syl z R1 x y x u R1 y rank u rank TC u u R1 rank z rank u rank TC u
21 r1elwf z R1 x z R1 On
22 r1rankidb z R1 On z R1 rank z
23 ssralv z R1 rank z u R1 rank z rank u rank TC u u z rank u rank TC u
24 21 22 23 3syl z R1 x u R1 rank z rank u rank TC u u z rank u rank TC u
25 20 24 syld z R1 x y x u R1 y rank u rank TC u u z rank u rank TC u
26 14 15 25 sylc x On y x u R1 y rank u rank TC u z R1 x w rank z u z rank u rank TC u
27 rankval3b z R1 On rank z = x On | u z rank u x
28 27 eleq2d z R1 On w rank z w x On | u z rank u x
29 28 biimpd z R1 On w rank z w x On | u z rank u x
30 rankon rank z On
31 30 oneli w rank z w On
32 eleq2w x = w rank u x rank u w
33 32 ralbidv x = w u z rank u x u z rank u w
34 33 onnminsb w On w x On | u z rank u x ¬ u z rank u w
35 31 34 syl w rank z w x On | u z rank u x ¬ u z rank u w
36 29 35 sylcom z R1 On w rank z ¬ u z rank u w
37 21 36 syl z R1 x w rank z ¬ u z rank u w
38 37 imp z R1 x w rank z ¬ u z rank u w
39 rexnal u z ¬ rank u w ¬ u z rank u w
40 38 39 sylibr z R1 x w rank z u z ¬ rank u w
41 40 adantl x On y x u R1 y rank u rank TC u z R1 x w rank z u z ¬ rank u w
42 r19.29 u z rank u rank TC u u z ¬ rank u w u z rank u rank TC u ¬ rank u w
43 26 41 42 syl2anc x On y x u R1 y rank u rank TC u z R1 x w rank z u z rank u rank TC u ¬ rank u w
44 simp2 z R1 x w rank z u z rank u rank TC u ¬ rank u w u z
45 tcid z V z TC z
46 45 elv z TC z
47 46 sseli u z u TC z
48 fveqeq2 x = u rank x = w rank u = w
49 48 rspcev u TC z rank u = w x TC z rank x = w
50 49 ex u TC z rank u = w x TC z rank x = w
51 44 47 50 3syl z R1 x w rank z u z rank u rank TC u ¬ rank u w rank u = w x TC z rank x = w
52 simp3l z R1 x w rank z u z rank u rank TC u ¬ rank u w rank u rank TC u
53 52 sseld z R1 x w rank z u z rank u rank TC u ¬ rank u w w rank u w rank TC u
54 simp1l z R1 x w rank z u z rank u rank TC u ¬ rank u w z R1 x
55 rankf rank : R1 On On
56 ffn rank : R1 On On rank Fn R1 On
57 55 56 ax-mp rank Fn R1 On
58 r1tr Tr R1 x
59 trel Tr R1 x u z z R1 x u R1 x
60 58 59 ax-mp u z z R1 x u R1 x
61 r1elwf u R1 x u R1 On
62 tcwf u R1 On TC u R1 On
63 fvex TC u V
64 63 r1elss TC u R1 On TC u R1 On
65 62 64 sylib u R1 On TC u R1 On
66 60 61 65 3syl u z z R1 x TC u R1 On
67 fvelimab rank Fn R1 On TC u R1 On w rank TC u x TC u rank x = w
68 57 66 67 sylancr u z z R1 x w rank TC u x TC u rank x = w
69 vex z V
70 69 tcel u z TC u TC z
71 ssrexv TC u TC z x TC u rank x = w x TC z rank x = w
72 70 71 syl u z x TC u rank x = w x TC z rank x = w
73 72 adantr u z z R1 x x TC u rank x = w x TC z rank x = w
74 68 73 sylbid u z z R1 x w rank TC u x TC z rank x = w
75 44 54 74 syl2anc z R1 x w rank z u z rank u rank TC u ¬ rank u w w rank TC u x TC z rank x = w
76 53 75 syld z R1 x w rank z u z rank u rank TC u ¬ rank u w w rank u x TC z rank x = w
77 rankon rank u On
78 eloni rank u On Ord rank u
79 eloni w On Ord w
80 ordtri3or Ord rank u Ord w rank u w rank u = w w rank u
81 78 79 80 syl2an rank u On w On rank u w rank u = w w rank u
82 77 31 81 sylancr w rank z rank u w rank u = w w rank u
83 3orass rank u w rank u = w w rank u rank u w rank u = w w rank u
84 82 83 sylib w rank z rank u w rank u = w w rank u
85 84 orcanai w rank z ¬ rank u w rank u = w w rank u
86 85 ad2ant2l z R1 x w rank z rank u rank TC u ¬ rank u w rank u = w w rank u
87 86 3adant2 z R1 x w rank z u z rank u rank TC u ¬ rank u w rank u = w w rank u
88 51 76 87 mpjaod z R1 x w rank z u z rank u rank TC u ¬ rank u w x TC z rank x = w
89 88 rexlimdv3a z R1 x w rank z u z rank u rank TC u ¬ rank u w x TC z rank x = w
90 13 43 89 sylc x On y x u R1 y rank u rank TC u z R1 x w rank z x TC z rank x = w
91 90 expr x On y x u R1 y rank u rank TC u z R1 x w rank z x TC z rank x = w
92 tcwf z R1 On TC z R1 On
93 r1elssi TC z R1 On TC z R1 On
94 fvelimab rank Fn R1 On TC z R1 On w rank TC z x TC z rank x = w
95 93 94 sylan2 rank Fn R1 On TC z R1 On w rank TC z x TC z rank x = w
96 57 92 95 sylancr z R1 On w rank TC z x TC z rank x = w
97 21 96 syl z R1 x w rank TC z x TC z rank x = w
98 97 adantl x On y x u R1 y rank u rank TC u z R1 x w rank TC z x TC z rank x = w
99 91 98 sylibrd x On y x u R1 y rank u rank TC u z R1 x w rank z w rank TC z
100 99 ssrdv x On y x u R1 y rank u rank TC u z R1 x rank z rank TC z
101 100 ralrimiva x On y x u R1 y rank u rank TC u z R1 x rank z rank TC z
102 101 ex x On y x u R1 y rank u rank TC u z R1 x rank z rank TC z
103 10 12 102 tfis3 suc y On z R1 suc y rank z rank TC z
104 fveq2 z = A rank z = rank A
105 fveq2 z = A TC z = TC A
106 105 imaeq2d z = A rank TC z = rank TC A
107 104 106 sseq12d z = A rank z rank TC z rank A rank TC A
108 107 rspccv z R1 suc y rank z rank TC z A R1 suc y rank A rank TC A
109 2 103 108 3syl y On A R1 suc y rank A rank TC A
110 109 rexlimiv y On A R1 suc y rank A rank TC A
111 1 110 sylbi A R1 On rank A rank TC A
112 tcvalg A R1 On TC A = x | A x Tr x
113 r1rankidb A R1 On A R1 rank A
114 r1tr Tr R1 rank A
115 fvex R1 rank A V
116 sseq2 x = R1 rank A A x A R1 rank A
117 treq x = R1 rank A Tr x Tr R1 rank A
118 116 117 anbi12d x = R1 rank A A x Tr x A R1 rank A Tr R1 rank A
119 115 118 elab R1 rank A x | A x Tr x A R1 rank A Tr R1 rank A
120 intss1 R1 rank A x | A x Tr x x | A x Tr x R1 rank A
121 119 120 sylbir A R1 rank A Tr R1 rank A x | A x Tr x R1 rank A
122 113 114 121 sylancl A R1 On x | A x Tr x R1 rank A
123 112 122 eqsstrd A R1 On TC A R1 rank A
124 imass2 TC A R1 rank A rank TC A rank R1 rank A
125 ffun rank : R1 On On Fun rank
126 55 125 ax-mp Fun rank
127 fvelima Fun rank x rank R1 rank A y R1 rank A rank y = x
128 126 127 mpan x rank R1 rank A y R1 rank A rank y = x
129 rankr1ai y R1 rank A rank y rank A
130 eleq1 rank y = x rank y rank A x rank A
131 129 130 syl5ibcom y R1 rank A rank y = x x rank A
132 131 rexlimiv y R1 rank A rank y = x x rank A
133 128 132 syl x rank R1 rank A x rank A
134 133 ssriv rank R1 rank A rank A
135 124 134 sstrdi TC A R1 rank A rank TC A rank A
136 123 135 syl A R1 On rank TC A rank A
137 111 136 eqssd A R1 On rank A = rank TC A