Metamath Proof Explorer


Theorem tcsni

Description: The transitive closure of a singleton. Proof suggested by Gérard Lang. (Contributed by Mario Carneiro, 4-Jun-2015)

Ref Expression
Hypothesis tc2.1 A V
Assertion tcsni TC A = TC A A

Proof

Step Hyp Ref Expression
1 tc2.1 A V
2 1 snss A x A x
3 2 anbi1i A x Tr x A x Tr x
4 3 abbii x | A x Tr x = x | A x Tr x
5 4 inteqi x | A x Tr x = x | A x Tr x
6 1 tc2 TC A A = x | A x Tr x
7 snex A V
8 tcvalg A V TC A = x | A x Tr x
9 7 8 ax-mp TC A = x | A x Tr x
10 5 6 9 3eqtr4ri TC A = TC A A