Metamath Proof Explorer


Theorem tcss

Description: The transitive closure function inherits the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Hypothesis tc2.1 A V
Assertion tcss B A TC B TC A

Proof

Step Hyp Ref Expression
1 tc2.1 A V
2 1 ssex B A B V
3 tcvalg B V TC B = x | B x Tr x
4 2 3 syl B A TC B = x | B x Tr x
5 sstr2 B A A x B x
6 5 anim1d B A A x Tr x B x Tr x
7 6 ss2abdv B A x | A x Tr x x | B x Tr x
8 intss x | A x Tr x x | B x Tr x x | B x Tr x x | A x Tr x
9 7 8 syl B A x | B x Tr x x | A x Tr x
10 tcvalg A V TC A = x | A x Tr x
11 1 10 ax-mp TC A = x | A x Tr x
12 9 11 sseqtrrdi B A x | B x Tr x TC A
13 4 12 eqsstrd B A TC B TC A