Metamath Proof Explorer


Theorem tctr

Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tctr Tr TC A

Proof

Step Hyp Ref Expression
1 trint y x | A x Tr x Tr y Tr x | A x Tr x
2 vex y V
3 sseq2 x = y A x A y
4 treq x = y Tr x Tr y
5 3 4 anbi12d x = y A x Tr x A y Tr y
6 2 5 elab y x | A x Tr x A y Tr y
7 6 simprbi y x | A x Tr x Tr y
8 1 7 mprg Tr x | A x Tr x
9 tcvalg A V TC A = x | A x Tr x
10 treq TC A = x | A x Tr x Tr TC A Tr x | A x Tr x
11 9 10 syl A V Tr TC A Tr x | A x Tr x
12 8 11 mpbiri A V Tr TC A
13 tr0 Tr
14 fvprc ¬ A V TC A =
15 treq TC A = Tr TC A Tr
16 14 15 syl ¬ A V Tr TC A Tr
17 13 16 mpbiri ¬ A V Tr TC A
18 12 17 pm2.61i Tr TC A