Metamath Proof Explorer


Theorem tcvalg

Description: Value of the transitive closure function. (The fact that this intersection exists is a non-trivial fact that depends on ax-inf ; see tz9.1 .) (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tcvalg A V TC A = x | A x Tr x

Proof

Step Hyp Ref Expression
1 fveq2 y = A TC y = TC A
2 sseq1 y = A y x A x
3 2 anbi1d y = A y x Tr x A x Tr x
4 3 abbidv y = A x | y x Tr x = x | A x Tr x
5 4 inteqd y = A x | y x Tr x = x | A x Tr x
6 1 5 eqeq12d y = A TC y = x | y x Tr x TC A = x | A x Tr x
7 vex y V
8 7 tz9.1c x | y x Tr x V
9 df-tc TC = y V x | y x Tr x
10 9 fvmpt2 y V x | y x Tr x V TC y = x | y x Tr x
11 7 8 10 mp2an TC y = x | y x Tr x
12 6 11 vtoclg A V TC A = x | A x Tr x