Metamath Proof Explorer


Theorem tdeglem1

Description: Functionality of the total degree helper function. (Contributed by Stefan O'Rear, 19-Mar-2015) (Proof shortened by AV, 27-Jul-2019) Remove sethood antecedent. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses tdeglem.a A = m 0 I | m -1 Fin
tdeglem.h H = h A fld h
Assertion tdeglem1 H : A 0

Proof

Step Hyp Ref Expression
1 tdeglem.a A = m 0 I | m -1 Fin
2 tdeglem.h H = h A fld h
3 cnfld0 0 = 0 fld
4 cnring fld Ring
5 ringcmn fld Ring fld CMnd
6 4 5 mp1i h A fld CMnd
7 id h A h A
8 1 psrbagf h A h : I 0
9 8 ffnd h A h Fn I
10 7 9 fndmexd h A I V
11 nn0subm 0 SubMnd fld
12 11 a1i h A 0 SubMnd fld
13 1 psrbagfsupp h A finSupp 0 h
14 3 6 10 12 8 13 gsumsubmcl h A fld h 0
15 2 14 fmpti H : A 0