Metamath Proof Explorer


Theorem tdeglem2

Description: Simplification of total degree for the univariate case. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Assertion tdeglem2 h 0 1 𝑜 h = h 0 1 𝑜 fld h

Proof

Step Hyp Ref Expression
1 elmapi h 0 h : 0
2 1 feqmptd h 0 h = x h x
3 2 oveq2d h 0 fld h = fld x h x
4 cnring fld Ring
5 ringmnd fld Ring fld Mnd
6 4 5 mp1i h 0 fld Mnd
7 0ex V
8 7 a1i h 0 V
9 7 snid
10 ffvelrn h : 0 h 0
11 1 9 10 sylancl h 0 h 0
12 11 nn0cnd h 0 h
13 cnfldbas = Base fld
14 fveq2 x = h x = h
15 13 14 gsumsn fld Mnd V h fld x h x = h
16 6 8 12 15 syl3anc h 0 fld x h x = h
17 3 16 eqtrd h 0 fld h = h
18 df1o2 1 𝑜 =
19 18 oveq2i 0 1 𝑜 = 0
20 17 19 eleq2s h 0 1 𝑜 fld h = h
21 20 eqcomd h 0 1 𝑜 h = fld h
22 21 mpteq2ia h 0 1 𝑜 h = h 0 1 𝑜 fld h