Metamath Proof Explorer


Theorem tdeglem4

Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses tdeglem.a A = m 0 I | m -1 Fin
tdeglem.h H = h A fld h
Assertion tdeglem4 X A H X = 0 X = I × 0

Proof

Step Hyp Ref Expression
1 tdeglem.a A = m 0 I | m -1 Fin
2 tdeglem.h H = h A fld h
3 rexnal x I ¬ X x = 0 ¬ x I X x = 0
4 df-ne X x 0 ¬ X x = 0
5 oveq2 h = X fld h = fld X
6 ovex fld X V
7 5 2 6 fvmpt X A H X = fld X
8 7 adantr X A x I X x 0 H X = fld X
9 1 psrbagf X A X : I 0
10 9 feqmptd X A X = y I X y
11 10 adantr X A x I X x 0 X = y I X y
12 11 oveq2d X A x I X x 0 fld X = fld y I X y
13 cnfldbas = Base fld
14 cnfld0 0 = 0 fld
15 cnfldadd + = + fld
16 cnring fld Ring
17 ringcmn fld Ring fld CMnd
18 16 17 mp1i X A x I X x 0 fld CMnd
19 id X A X A
20 9 ffnd X A X Fn I
21 19 20 fndmexd X A I V
22 21 adantr X A x I X x 0 I V
23 9 ffvelrnda X A y I X y 0
24 23 nn0cnd X A y I X y
25 24 adantlr X A x I X x 0 y I X y
26 1 psrbagfsupp X A finSupp 0 X
27 10 26 eqbrtrrd X A finSupp 0 y I X y
28 27 adantr X A x I X x 0 finSupp 0 y I X y
29 incom I x x = x I x
30 disjdif x I x =
31 29 30 eqtri I x x =
32 31 a1i X A x I X x 0 I x x =
33 difsnid x I I x x = I
34 33 eqcomd x I I = I x x
35 34 ad2antrl X A x I X x 0 I = I x x
36 13 14 15 18 22 25 28 32 35 gsumsplit2 X A x I X x 0 fld y I X y = fld y I x X y + fld y x X y
37 8 12 36 3eqtrd X A x I X x 0 H X = fld y I x X y + fld y x X y
38 difexg I V I x V
39 22 38 syl X A x I X x 0 I x V
40 nn0subm 0 SubMnd fld
41 40 a1i X A x I X x 0 0 SubMnd fld
42 9 adantr X A x I X x 0 X : I 0
43 eldifi y I x y I
44 ffvelrn X : I 0 y I X y 0
45 42 43 44 syl2an X A x I X x 0 y I x X y 0
46 45 fmpttd X A x I X x 0 y I x X y : I x 0
47 39 mptexd X A x I X x 0 y I x X y V
48 funmpt Fun y I x X y
49 48 a1i X A x I X x 0 Fun y I x X y
50 funmpt Fun y I X y
51 difss I x I
52 mptss I x I y I x X y y I X y
53 51 52 ax-mp y I x X y y I X y
54 22 mptexd X A x I X x 0 y I X y V
55 funsssuppss Fun y I X y y I x X y y I X y y I X y V y I x X y supp 0 y I X y supp 0
56 50 53 54 55 mp3an12i X A x I X x 0 y I x X y supp 0 y I X y supp 0
57 fsuppsssupp y I x X y V Fun y I x X y finSupp 0 y I X y y I x X y supp 0 y I X y supp 0 finSupp 0 y I x X y
58 47 49 28 56 57 syl22anc X A x I X x 0 finSupp 0 y I x X y
59 14 18 39 41 46 58 gsumsubmcl X A x I X x 0 fld y I x X y 0
60 ringmnd fld Ring fld Mnd
61 16 60 ax-mp fld Mnd
62 simprl X A x I X x 0 x I
63 42 62 ffvelrnd X A x I X x 0 X x 0
64 63 nn0cnd X A x I X x 0 X x
65 fveq2 y = x X y = X x
66 13 65 gsumsn fld Mnd x I X x fld y x X y = X x
67 61 62 64 66 mp3an2i X A x I X x 0 fld y x X y = X x
68 elnn0 X x 0 X x X x = 0
69 63 68 sylib X A x I X x 0 X x X x = 0
70 neneq X x 0 ¬ X x = 0
71 70 ad2antll X A x I X x 0 ¬ X x = 0
72 69 71 olcnd X A x I X x 0 X x
73 67 72 eqeltrd X A x I X x 0 fld y x X y
74 nn0nnaddcl fld y I x X y 0 fld y x X y fld y I x X y + fld y x X y
75 59 73 74 syl2anc X A x I X x 0 fld y I x X y + fld y x X y
76 75 nnne0d X A x I X x 0 fld y I x X y + fld y x X y 0
77 37 76 eqnetrd X A x I X x 0 H X 0
78 77 expr X A x I X x 0 H X 0
79 4 78 syl5bir X A x I ¬ X x = 0 H X 0
80 79 rexlimdva X A x I ¬ X x = 0 H X 0
81 3 80 syl5bir X A ¬ x I X x = 0 H X 0
82 81 necon4bd X A H X = 0 x I X x = 0
83 c0ex 0 V
84 fnconstg 0 V I × 0 Fn I
85 83 84 mp1i X A I × 0 Fn I
86 eqfnfv X Fn I I × 0 Fn I X = I × 0 x I X x = I × 0 x
87 20 85 86 syl2anc X A X = I × 0 x I X x = I × 0 x
88 83 fvconst2 x I I × 0 x = 0
89 88 eqeq2d x I X x = I × 0 x X x = 0
90 89 ralbiia x I X x = I × 0 x x I X x = 0
91 87 90 bitrdi X A X = I × 0 x I X x = 0
92 82 91 sylibrd X A H X = 0 X = I × 0
93 1 psrbag0 I V I × 0 A
94 oveq2 h = I × 0 fld h = fld I × 0
95 ovex fld I × 0 V
96 94 2 95 fvmpt I × 0 A H I × 0 = fld I × 0
97 21 93 96 3syl X A H I × 0 = fld I × 0
98 fconstmpt I × 0 = x I 0
99 98 oveq2i fld I × 0 = fld x I 0
100 14 gsumz fld Mnd I V fld x I 0 = 0
101 61 21 100 sylancr X A fld x I 0 = 0
102 99 101 syl5eq X A fld I × 0 = 0
103 97 102 eqtrd X A H I × 0 = 0
104 fveqeq2 X = I × 0 H X = 0 H I × 0 = 0
105 103 104 syl5ibrcom X A X = I × 0 H X = 0
106 92 105 impbid X A H X = 0 X = I × 0