Metamath Proof Explorer


Theorem tdeglem4

Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses tdeglem.a A = m 0 I | m -1 Fin
tdeglem.h H = h A fld h
Assertion tdeglem4 X A H X = 0 X = I × 0

Proof

Step Hyp Ref Expression
1 tdeglem.a A = m 0 I | m -1 Fin
2 tdeglem.h H = h A fld h
3 rexnal x I ¬ X x = 0 ¬ x I X x = 0
4 df-ne X x 0 ¬ X x = 0
5 oveq2 h = X fld h = fld X
6 ovex fld X V
7 5 2 6 fvmpt X A H X = fld X
8 7 adantr X A x I X x 0 H X = fld X
9 1 psrbagf X A X : I 0
10 9 feqmptd X A X = y I X y
11 10 adantr X A x I X x 0 X = y I X y
12 11 oveq2d X A x I X x 0 fld X = fld y I X y
13 cnfldbas = Base fld
14 cnfld0 0 = 0 fld
15 cnfldadd + = + fld
16 cnring fld Ring
17 ringcmn fld Ring fld CMnd
18 16 17 mp1i X A x I X x 0 fld CMnd
19 id X A X A
20 9 ffnd X A X Fn I
21 19 20 fndmexd X A I V
22 21 adantr X A x I X x 0 I V
23 9 ffvelrnda X A y I X y 0
24 23 nn0cnd X A y I X y
25 24 adantlr X A x I X x 0 y I X y
26 1 psrbagfsupp X A finSupp 0 X
27 10 26 eqbrtrrd X A finSupp 0 y I X y
28 27 adantr X A x I X x 0 finSupp 0 y I X y
29 disjdifr I x x =
30 29 a1i X A x I X x 0 I x x =
31 difsnid x I I x x = I
32 31 eqcomd x I I = I x x
33 32 ad2antrl X A x I X x 0 I = I x x
34 13 14 15 18 22 25 28 30 33 gsumsplit2 X A x I X x 0 fld y I X y = fld y I x X y + fld y x X y
35 8 12 34 3eqtrd X A x I X x 0 H X = fld y I x X y + fld y x X y
36 22 difexd X A x I X x 0 I x V
37 nn0subm 0 SubMnd fld
38 37 a1i X A x I X x 0 0 SubMnd fld
39 9 adantr X A x I X x 0 X : I 0
40 eldifi y I x y I
41 ffvelrn X : I 0 y I X y 0
42 39 40 41 syl2an X A x I X x 0 y I x X y 0
43 42 fmpttd X A x I X x 0 y I x X y : I x 0
44 36 mptexd X A x I X x 0 y I x X y V
45 funmpt Fun y I x X y
46 45 a1i X A x I X x 0 Fun y I x X y
47 funmpt Fun y I X y
48 difss I x I
49 mptss I x I y I x X y y I X y
50 48 49 ax-mp y I x X y y I X y
51 22 mptexd X A x I X x 0 y I X y V
52 funsssuppss Fun y I X y y I x X y y I X y y I X y V y I x X y supp 0 y I X y supp 0
53 47 50 51 52 mp3an12i X A x I X x 0 y I x X y supp 0 y I X y supp 0
54 fsuppsssupp y I x X y V Fun y I x X y finSupp 0 y I X y y I x X y supp 0 y I X y supp 0 finSupp 0 y I x X y
55 44 46 28 53 54 syl22anc X A x I X x 0 finSupp 0 y I x X y
56 14 18 36 38 43 55 gsumsubmcl X A x I X x 0 fld y I x X y 0
57 ringmnd fld Ring fld Mnd
58 16 57 ax-mp fld Mnd
59 simprl X A x I X x 0 x I
60 39 59 ffvelrnd X A x I X x 0 X x 0
61 60 nn0cnd X A x I X x 0 X x
62 fveq2 y = x X y = X x
63 13 62 gsumsn fld Mnd x I X x fld y x X y = X x
64 58 59 61 63 mp3an2i X A x I X x 0 fld y x X y = X x
65 elnn0 X x 0 X x X x = 0
66 60 65 sylib X A x I X x 0 X x X x = 0
67 neneq X x 0 ¬ X x = 0
68 67 ad2antll X A x I X x 0 ¬ X x = 0
69 66 68 olcnd X A x I X x 0 X x
70 64 69 eqeltrd X A x I X x 0 fld y x X y
71 nn0nnaddcl fld y I x X y 0 fld y x X y fld y I x X y + fld y x X y
72 56 70 71 syl2anc X A x I X x 0 fld y I x X y + fld y x X y
73 72 nnne0d X A x I X x 0 fld y I x X y + fld y x X y 0
74 35 73 eqnetrd X A x I X x 0 H X 0
75 74 expr X A x I X x 0 H X 0
76 4 75 syl5bir X A x I ¬ X x = 0 H X 0
77 76 rexlimdva X A x I ¬ X x = 0 H X 0
78 3 77 syl5bir X A ¬ x I X x = 0 H X 0
79 78 necon4bd X A H X = 0 x I X x = 0
80 c0ex 0 V
81 fnconstg 0 V I × 0 Fn I
82 80 81 mp1i X A I × 0 Fn I
83 eqfnfv X Fn I I × 0 Fn I X = I × 0 x I X x = I × 0 x
84 20 82 83 syl2anc X A X = I × 0 x I X x = I × 0 x
85 80 fvconst2 x I I × 0 x = 0
86 85 eqeq2d x I X x = I × 0 x X x = 0
87 86 ralbiia x I X x = I × 0 x x I X x = 0
88 84 87 bitrdi X A X = I × 0 x I X x = 0
89 79 88 sylibrd X A H X = 0 X = I × 0
90 1 psrbag0 I V I × 0 A
91 oveq2 h = I × 0 fld h = fld I × 0
92 ovex fld I × 0 V
93 91 2 92 fvmpt I × 0 A H I × 0 = fld I × 0
94 21 90 93 3syl X A H I × 0 = fld I × 0
95 fconstmpt I × 0 = x I 0
96 95 oveq2i fld I × 0 = fld x I 0
97 14 gsumz fld Mnd I V fld x I 0 = 0
98 58 21 97 sylancr X A fld x I 0 = 0
99 96 98 syl5eq X A fld I × 0 = 0
100 94 99 eqtrd X A H I × 0 = 0
101 fveqeq2 X = I × 0 H X = 0 H I × 0 = 0
102 100 101 syl5ibrcom X A X = I × 0 H X = 0
103 89 102 impbid X A H X = 0 X = I × 0