Metamath Proof Explorer


Theorem tdeglem4OLD

Description: Obsolete version of tdeglem4 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 29-Mar-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses tdeglem.a A = m 0 I | m -1 Fin
tdeglem.h H = h A fld h
Assertion tdeglem4OLD I V X A H X = 0 X = I × 0

Proof

Step Hyp Ref Expression
1 tdeglem.a A = m 0 I | m -1 Fin
2 tdeglem.h H = h A fld h
3 rexnal x I ¬ X x = 0 ¬ x I X x = 0
4 df-ne X x 0 ¬ X x = 0
5 oveq2 h = X fld h = fld X
6 ovex fld X V
7 5 2 6 fvmpt X A H X = fld X
8 7 ad2antlr I V X A x I X x 0 H X = fld X
9 1 psrbagfOLD I V X A X : I 0
10 9 feqmptd I V X A X = y I X y
11 10 adantr I V X A x I X x 0 X = y I X y
12 11 oveq2d I V X A x I X x 0 fld X = fld y I X y
13 cnfldbas = Base fld
14 cnfld0 0 = 0 fld
15 cnfldadd + = + fld
16 cnring fld Ring
17 ringcmn fld Ring fld CMnd
18 16 17 mp1i I V X A x I X x 0 fld CMnd
19 simpll I V X A x I X x 0 I V
20 9 adantr I V X A x I X x 0 X : I 0
21 20 ffvelrnda I V X A x I X x 0 y I X y 0
22 21 nn0cnd I V X A x I X x 0 y I X y
23 1 psrbagfsuppOLD X A I V finSupp 0 X
24 23 ancoms I V X A finSupp 0 X
25 24 adantr I V X A x I X x 0 finSupp 0 X
26 11 25 eqbrtrrd I V X A x I X x 0 finSupp 0 y I X y
27 incom I x x = x I x
28 disjdif x I x =
29 27 28 eqtri I x x =
30 29 a1i I V X A x I X x 0 I x x =
31 difsnid x I I x x = I
32 31 eqcomd x I I = I x x
33 32 ad2antrl I V X A x I X x 0 I = I x x
34 13 14 15 18 19 22 26 30 33 gsumsplit2 I V X A x I X x 0 fld y I X y = fld y I x X y + fld y x X y
35 8 12 34 3eqtrd I V X A x I X x 0 H X = fld y I x X y + fld y x X y
36 difexg I V I x V
37 36 ad2antrr I V X A x I X x 0 I x V
38 nn0subm 0 SubMnd fld
39 38 a1i I V X A x I X x 0 0 SubMnd fld
40 eldifi y I x y I
41 ffvelrn X : I 0 y I X y 0
42 20 40 41 syl2an I V X A x I X x 0 y I x X y 0
43 42 fmpttd I V X A x I X x 0 y I x X y : I x 0
44 36 mptexd I V y I x X y V
45 44 ad2antrr I V X A x I X x 0 y I x X y V
46 funmpt Fun y I x X y
47 46 a1i I V X A x I X x 0 Fun y I x X y
48 funmpt Fun y I X y
49 difss I x I
50 resmpt I x I y I X y I x = y I x X y
51 49 50 ax-mp y I X y I x = y I x X y
52 resss y I X y I x y I X y
53 51 52 eqsstrri y I x X y y I X y
54 mptexg I V y I X y V
55 54 ad2antrr I V X A x I X x 0 y I X y V
56 funsssuppss Fun y I X y y I x X y y I X y y I X y V y I x X y supp 0 y I X y supp 0
57 48 53 55 56 mp3an12i I V X A x I X x 0 y I x X y supp 0 y I X y supp 0
58 fsuppsssupp y I x X y V Fun y I x X y finSupp 0 y I X y y I x X y supp 0 y I X y supp 0 finSupp 0 y I x X y
59 45 47 26 57 58 syl22anc I V X A x I X x 0 finSupp 0 y I x X y
60 14 18 37 39 43 59 gsumsubmcl I V X A x I X x 0 fld y I x X y 0
61 ringmnd fld Ring fld Mnd
62 16 61 mp1i I V X A x I X x 0 fld Mnd
63 simprl I V X A x I X x 0 x I
64 20 63 ffvelrnd I V X A x I X x 0 X x 0
65 64 nn0cnd I V X A x I X x 0 X x
66 fveq2 y = x X y = X x
67 13 66 gsumsn fld Mnd x I X x fld y x X y = X x
68 62 63 65 67 syl3anc I V X A x I X x 0 fld y x X y = X x
69 simprr I V X A x I X x 0 X x 0
70 69 4 sylib I V X A x I X x 0 ¬ X x = 0
71 elnn0 X x 0 X x X x = 0
72 64 71 sylib I V X A x I X x 0 X x X x = 0
73 orel2 ¬ X x = 0 X x X x = 0 X x
74 70 72 73 sylc I V X A x I X x 0 X x
75 68 74 eqeltrd I V X A x I X x 0 fld y x X y
76 nn0nnaddcl fld y I x X y 0 fld y x X y fld y I x X y + fld y x X y
77 60 75 76 syl2anc I V X A x I X x 0 fld y I x X y + fld y x X y
78 77 nnne0d I V X A x I X x 0 fld y I x X y + fld y x X y 0
79 35 78 eqnetrd I V X A x I X x 0 H X 0
80 79 expr I V X A x I X x 0 H X 0
81 4 80 syl5bir I V X A x I ¬ X x = 0 H X 0
82 81 rexlimdva I V X A x I ¬ X x = 0 H X 0
83 3 82 syl5bir I V X A ¬ x I X x = 0 H X 0
84 83 necon4bd I V X A H X = 0 x I X x = 0
85 9 ffnd I V X A X Fn I
86 0nn0 0 0
87 fnconstg 0 0 I × 0 Fn I
88 86 87 mp1i I V X A I × 0 Fn I
89 eqfnfv X Fn I I × 0 Fn I X = I × 0 x I X x = I × 0 x
90 85 88 89 syl2anc I V X A X = I × 0 x I X x = I × 0 x
91 c0ex 0 V
92 91 fvconst2 x I I × 0 x = 0
93 92 eqeq2d x I X x = I × 0 x X x = 0
94 93 ralbiia x I X x = I × 0 x x I X x = 0
95 90 94 bitrdi I V X A X = I × 0 x I X x = 0
96 84 95 sylibrd I V X A H X = 0 X = I × 0
97 1 psrbag0 I V I × 0 A
98 97 adantr I V X A I × 0 A
99 oveq2 h = I × 0 fld h = fld I × 0
100 ovex fld I × 0 V
101 99 2 100 fvmpt I × 0 A H I × 0 = fld I × 0
102 98 101 syl I V X A H I × 0 = fld I × 0
103 fconstmpt I × 0 = x I 0
104 103 oveq2i fld I × 0 = fld x I 0
105 16 61 ax-mp fld Mnd
106 14 gsumz fld Mnd I V fld x I 0 = 0
107 105 106 mpan I V fld x I 0 = 0
108 107 adantr I V X A fld x I 0 = 0
109 104 108 syl5eq I V X A fld I × 0 = 0
110 102 109 eqtrd I V X A H I × 0 = 0
111 fveqeq2 X = I × 0 H X = 0 H I × 0 = 0
112 110 111 syl5ibrcom I V X A X = I × 0 H X = 0
113 96 112 impbid I V X A H X = 0 X = I × 0