Metamath Proof Explorer


Theorem tdrgunit

Description: The unit group of a topological division ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses istrg.1 M=mulGrpR
istdrg.1 U=UnitR
Assertion tdrgunit RTopDRingM𝑠UTopGrp

Proof

Step Hyp Ref Expression
1 istrg.1 M=mulGrpR
2 istdrg.1 U=UnitR
3 1 2 istdrg RTopDRingRTopRingRDivRingM𝑠UTopGrp
4 3 simp3bi RTopDRingM𝑠UTopGrp