Metamath Proof Explorer


Theorem telfsum

Description: Sum of a telescoping series. (Contributed by Scott Fenton, 24-Apr-2014) (Revised by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses telfsum.1 k = j A = B
telfsum.2 k = j + 1 A = C
telfsum.3 k = M A = D
telfsum.4 k = N + 1 A = E
telfsum.5 φ N
telfsum.6 φ N + 1 M
telfsum.7 φ k M N + 1 A
Assertion telfsum φ j = M N B C = D E

Proof

Step Hyp Ref Expression
1 telfsum.1 k = j A = B
2 telfsum.2 k = j + 1 A = C
3 telfsum.3 k = M A = D
4 telfsum.4 k = N + 1 A = E
5 telfsum.5 φ N
6 telfsum.6 φ N + 1 M
7 telfsum.7 φ k M N + 1 A
8 fzval3 N M N = M ..^ N + 1
9 5 8 syl φ M N = M ..^ N + 1
10 9 sumeq1d φ j = M N B C = j M ..^ N + 1 B C
11 1 2 3 4 6 7 telfsumo φ j M ..^ N + 1 B C = D E
12 10 11 eqtrd φ j = M N B C = D E